

jQuery 1.4 Plugin Development
Beginner's Guide

Build powerful, interactive plugins to implement jQuery
to its best

Giulio Bai

 BIRMINGHAM - MUMBAI

Download from Wow! eBook <www.wowebook.com>

jQuery 1.4 Plugin Development
Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2010

Production Reference: 1121010

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849512-24-4

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Download from Wow! eBook <www.wowebook.com>

Credits

Author

Giulio Bai

Reviewers

Abel Mohler

Peter Guo Pei

Keith Wood

Acquisition Editor

Chaitanya Apte

Development Editor

Chaitanya Apte

Technical Editor

Hithesh Uchil

Indexer

Hemangini Bari

Editorial Team Leader

Aanchal Kumar

Project Team Leader

Lata Basantani

Project Coordinator

Shubhanjan Chatterjee

Proofreader

Chris Smith

Graphics

Nilesh Mohite

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

Download from Wow! eBook <www.wowebook.com>

About the Author

Giulio Bai is a law student living in Modena, Italy who spends most of his time toying with
stuff that doesn't have anything to do with law.

Even after trying to keep the list of his past achievements as short as possible, the number of
projects he joined in (and invariably sunk short thereafter) makes it hard to narrow down his
interests to programming and carousels alone.

It should be made clear that any claim of responsibility for those unfortunate ventures is
wholeheartedly rejected—they never had the necessary potential to make it anyway.

I can't brag about this book with anybody if no credit for the beautiful
JavaScript library jQuery is given to its author, John Resig.

Also, a bunch of thanks are randomly distributed to everybody I had any
kind of contact with, in both real and virtual life, who have—no doubt—
somehow helped me in writing this precious manuscript.

Download from Wow! eBook <www.wowebook.com>

About the Reviewers

Abel Mohler is a freelance web developer and jQuery plugin author who works from his
home near Asheville in the mountains of North Carolina. He is the author of popular jQuery
plugins such as Mapbox and wTooltip. You can see a list of the plugins he has released at
http://wayfarerweb.com/jquery/plugins/.

I'd like to thank those at Packt Publishing who reached out to me to work
on a project as fun as this one, to the author for doing such a wonderful
job with the material, and to Project Coordinator Shubhanjan Chatterjee
for his patience and diligence in helping glue this project together into
what it became.

I'd also like to thank those who helped me along the way to become a
better developer, Brett Lytle of Lytleworks, who has the vision to find
unique and simple solutions to any problem, Matt McCabe for his endless
ideas and projects, and Mike Bykov of TigerTiger for helping to inspire
me to grow my own technologies. Most of all, I'd like to thank my wife,
Rebecca, for putting up with countless sleepless nights of studying, and
pushing me to be a better man.

Download from Wow! eBook <www.wowebook.com>

Peter Guo Pei is a Chinese Canadian website and software specialist. His expertise is
mainly in the design of websites and applications and other computer software systems. He
lives in the quiet town of Langley along the US-Canadian border with his lovely wife and two
kids. He studied computer science in Fudan University China.

He has worked for various IT companies in China, USA, and Canada, including Sun
Microsystems, Tandem, Wang, Kodak, and Motorola.

He loves to ride his bike.

I would like to thank my sweet wife Yan and my two lovely kids – my
daughter Angel and son Jimmy. They have always been the sunshine
of my life.

Keith Wood lives in Brisbane, Australia, where he is a Solutions Architect for Hyro Ltd.

He has been in the IT industry for over 20 years, working his way down from mainframes,
through mini-computers, to PCs. He has used Delphi and JBuilder since their first release,
contributing many OpenTools to the JBuilder community. He was also a frequent contributor
of technical articles to Delphi Informant, Delphi Developer's Journal, Hardcore Delphi, and
The Delphi Magazine magazines, and has written three books:

Delphi Developer's Guide to XML, WordWare Publishing, 2001

Delphi Developer's Guide to XML, 2nd Edition, BookSurge, 2003

Inside the JBuilder OpenTools API, BookSurge, 2004

He did the initial development for log4d, a port of log4j to Delphi, and SAX for Pascal.

More recently, he has worked with jQuery for several years and has contributed many jQuery
plugins—http://keith-wood.name/index.html#jquery—as well as developed with
Marc Grabanski the Datepicker component that was incorporated into the jQuery UI project.

Mostly, he works with Java these days, but uses jQuery for any frontend work.

Download from Wow! eBook <www.wowebook.com>

Table of Contents
Preface 1

Chapter 1: What is jQuery About? 7
A little background 8
jQuery: "the write less, do more JavaScript library" 8
How jQuery works 9
Time for action – writing a basic jQuery script 9
Time for action – callback and functions 10
Extending jQuery: Plugins 11
Plugins basics 12
Suggested reading that could help greatly 13

Books 13
Learning jQuery 1.3 13
jQuery 1.4 Reference Guide 14

Online reference and documentation 14
jQuery.com 14
Nettuts 15
Cheatsheets 15
Forums and mailing lists 15

Summary 17

Chapter 2: Plugins Basics 19
Using plugins 19
Time for action – looking for a plugin 20
Time for action – setting up our own page 24
Structure of a plugin 27
Time for action – types of plugins: Function plugins 28
Time for action – types of plugins: Messing with methods 31
Time for action – chaining 33
Basic plugins examples 35
A few key things to remember 36
Summary 39

Download from Wow! eBook <www.wowebook.com>

Table of Contents

[ii]

Chapter 3: Our First jQuery Plugin 41
Defining our own default plugin structure 42
Setting the basics for our first plugin 43
Time for action – our first plugin, Part I 43
Getting a step farther 45
Time for action – our first plugin, Part II: Hovering 45
Dealing with options 47
Time for action – our first plugin, Part III: Options 47
Using functions inside the plugin 49
Time for action – our first plugin, Part IV: Functions 50
Closures: Making functions private 52
Time for action – our first plugin, Part V: Closures 53
Summary 59

Chapter 4: Media Plugins: Images Plugins 61
Plugin overview 62
Handling images 64
Time for action – showing images 64
Time for action – one step more 67
Centering things 70
Time for action – turning theory into code 70
Putting it all together 72
Time for action – the final step 72
Summary 75

Chapter 5: Media Plugins: Audio Plugins 77
Plugin overview 78
Handling audio files 79
The player 80
Time for action – creating the Flash player 80
Putting the plugin together 82
Time for action – creating the plugin 83
Styling and multiple players 86
Time for action – adding support for multiple players 86
Time for action – adding some style 89
Summary 92

Chapter 6: Media Plugins: Video Plugins 95
Plugin overview 96
Handling video files 97
Embedding YouTube videos 98
Time for action – creating your first video plugin 99
Adding preview thumbnails and the pop-up feel 102

Download from Wow! eBook <www.wowebook.com>

Table of Contents

[iii]

Time for action – adding previews 102
Time for action – creating a pop up 103
Summary 108

Chapter 7: Form Plugins 111
Form plugins in general 112
Validating forms 113
Time for action – creating the form check plugin 114
Auto-growing textareas 120
Time for action – creating the autogrow plugin 121

Other types of form-related plugins 125
Checkboxes and radio buttons 125
Text manipulation 127
Edit in place 128

Summary 134

Chapter 8: User Interface Plugins 135
Positioning 136
Time for action – understanding mouse movement events 138
Setting equal heights 139
Time for action – setting the same height 140
Other examples of user interface plugins 143

Menu plugins 143
Form enhancement plugins 144
Context menus and tree menus 144

Summary 147

Chapter 9: User Interface Plugins: Tooltip Plugins 149
Tooltip plugins in general 150
Positioning the tooltip 151
Custom jQuery selectors 152
Time for action – creating custom jQuery selectors 153
Merging pieces together 154
Time for action – creating a tooltip plugin 154
Summary 161

Chapter 10: User Interface Plugins: Menu and Navigation Plugins 163
Splitting the work in two 164

CSS: Drop-down menu and styling 165
Time for action – creating and styling the menu 166

jQuery: Spicing things up 170
Time for action – adding a fading effect 170
Creating the plugin 171

Download from Wow! eBook <www.wowebook.com>

Table of Contents

[iv]

Time for action – creating the plugin 171
Summary 175

Chapter 11: Animation Plugins 177
Sliding 178

What does "sliding" actually mean? 178
Sample plugins that "slide" 179
Creating an accordion plugin (that slides!) 180

Time for action – creating sliding panes 180
Fading 186

What does "fading" actually mean? 186
Sample plugins that "fade" 187
Creating a fading news ticker plugin 188

Time for action – creating the plugin 189
The animate() method 194

Understanding the jQuery animate() method 194
Time for action – creating your first animation 195
Summary 201

Chapter 12: Utility Plugins 203
Generating tag clouds 204

A bit of theory to start with 204
Time for action – creating a tag cloud plugin 205
Cookie handling 210

How cookies work 211
Time for action – creating a cookie plugin 212
Summary 219

Chapter 13: Top jQuery Plugins 221
Typesearch 222

Description 222
Synopsis 223

Time for action – obtaining an OSX-like search bar with the Typesearch plugin 223
Final thoughts 225

JSON plugin 225
Description 225
Synopsis 226

Time for action – encoding and decoding JSON strings 226
Final thoughts 228

notNow 228
Description 228
Synopsis 228

Download from Wow! eBook <www.wowebook.com>

Table of Contents

[v]

Time for action – postponing a function using the notNow plugin 228
Final thoughts 229

Webcam 230
Description 230
Synopsis 231

Time for action – setting up and using the webcam plugin 232
Final thoughts 233

Quovolver 233
Description 234
Synopsis 234

Time for action – putting Quovolver to work 234
Final thoughts 236

ScrollToElement 236
Description 236
Synopsis 237

Time for action – different ways of scrolling 237
Final thoughts 238

PassRoids 239
Description 239
Synopsis 240

Time for action – using the plugin 240
Final thoughts 243

Virtual Keyboard Widget 243
Description 243
Synopsis 244

Time for action – using the virtual keyboard plugin 245
Final thoughts 246

Sliding Doors 246
Description 247
Synopsis 248

Time for action – creating a sliding door 248
Final thoughts 249

idleTimer 250
Description 250
Synopsis 251

Time for action – timing idle users 251
Final thoughts 252

Summary 254

Download from Wow! eBook <www.wowebook.com>

Table of Contents

[vi]

Appendix A: Tools, reference, and final recommendations 255
Reference and bibliography 255

Official jQuery documentation 255
jQuery API browser 256
jQuery 1.4 Reference Guide 256

Blogs to follow and websites to bookmark 256
jQuery blog 257
jQuery UI blog 257
John Resig 257
Learning jQuery 257
Jörn Zaefferer (bassistance) 257
jQuery for designers 257
jQuery HowTo 258

On browsers: compatibility, comparisons, and plugins 258
Supported browsers 258
Compatibility master table 258
Browser plugins 258

FireBug (Firefox) 258
Internet Explorer 8 Developer Tools 259
DebugBar (Internet Explorer) 259
Safari Web Inspector 259
Dragonfly (Opera) 259
Chrome Web Inspector 260

Cheatsheets 260
jQuery plugin development checklist 260

Appendix B: Pop Quiz Answers 263
Chapter 1: What is jQuery About? 263
Chapter 2: Plugins Basics 263
Chapter 3: Our First jQuery Plugin 264
Chapter 4: Media Plugins: Images Plugins 264
Chapter 5: Media Plugins: Audio Plugins 264
Chapter 6: Media Plugins: Video Plugins 264
Chapter 7: Form Plugins 265
Chapter 8: User Interface Plugins 265
Chapter 9: User Interface Plugins: Tooltip Plugins 265
Chapter 10: User Interface Plugins: Menu and Navigation Plugins 266
Chapter 11: Animation Plugins 266
Chapter 12: Utility Plugins 266
Chapter 13: Top jQuery Plugins 266

Index 237

Download from Wow! eBook <www.wowebook.com>

Preface
jQuery is the most famous JavaScript library. If you use jQuery a lot, it may be a good idea to
start packaging your code into plugins. A jQuery plugin is simply a way to put your code into
a package, which makes it easier to maintain your code and use it across different projects.
Although basic scripting is relatively straightforward, writing plugins can leave people
scratching their heads.

With this exhaustive guide in hand, you can start building your own plugins in a matter
of minutes! This book takes you beyond the basics of jQuery and enables you to take full
advantage of jQuery's powerful plugin architecture to deliver highly interactive content
to your website viewers.

This book contains all the information you need to successfully author your very own jQuery
plugin with a particular focus on the practical aspect of design and development.

This book will also cover some details of real-life plugins and explain their functioning
to gain a better understanding of the overall concept of plugin development and jQuery
plugin architecture.

Different topics regarding plugin development are discussed, and you will learn how to
develop many types of add-ons, ranging from media plugins (such as slideshows, video and
audio controls, and so on) to various utilities (image pre-loading, handling cookies). You will
also learn the use and applications of jQuery effects and animations (sliding, fading, and
combined animations) to eventually demonstrate how all of these plugins can be merged
and give birth to a new, more complex, and multipurpose script that comes in handy in
a lot of situations.

Download from Wow! eBook <www.wowebook.com>

Preface

[�]

What this book covers
Chapter 1, What is jQuery About?, covers what jQuery is and why we should use and prefer it
over other libraries. Some basic concepts, as well as some history, are covered in this chapter
that acts as an introduction to the real topic of the book.

Chapter 2, Plugins Basics, is our first real approach to jQuery plugins. It provides an in-depth
description of jQuery's own plugin architecture, providing some examples and sample
applications for some of the most popular plugins.

Chapter 3, Our First jQuery Plugin, as its name suggests, is about creating our first, working,
and fantastic jQuery plugin! Step-by-step instructions are provided in order to guide even
very beginners to the successful realization of their first plugin.

Chapter 4, Media Plugins: Images Plugins, discusses how images play a big role in today's
Internet. Since we don't want to be left out, nor behind, in this chapter, we do our best
to create a jQuery plugin that is very easy to use, customize, and at the same time, very
effective and good looking. Besides, a gallery-like plugin will certainly enhance the user
experience of our web pages!

Chapter 5, Media Plugins: Audio Plugins, shows us how, after images, sounds too can be
used in a variety of different ways to hold the visitor's attention. Not only will we learn how
to develop a jQuery-based audio player plugin, but we will also analyze the advantages and
disadvantages of the HTML5 audio tag, compared to JavaScript solutions.

Chapter 6, Media Plugins: Video Plugins, presents a detailed guide to the creation of a video
player plugin, and also offers some hints on how to better display video objects on a web
page with the aid of JavaScript and/or HTML code.

Chapter 7, Form Plugins, shows a handful of different, but all extremely useful, plugins
we can develop in order to improve our forms and offer an enhanced user experience on
our website. A number of jQuery plugins are coded, step-by-step, and discussed to better
understand what to use, how to use it, and in what circumstances.

Chapter 8, User Interface Plugins, offers many plugin examples and explains how the
developer should tackle the problem, in such a way that the final result can be easily
modified and integrated into an organized project.

Chapter 9, User Interface Plugins: Tooltip Plugins, explains that to get a fully working
tooltip plugin, a series of preliminary steps is required. These include understanding mouse
movement and events, positioning through CSS rules, and, last but not least, interaction
with jQuery code to actually show and hide the tooltip element at our will.

Download from Wow! eBook <www.wowebook.com>

Preface

[�]

Chapter 10, User Interface Plugins: Menu and Navigation Plugins, discusses how developing
menu and navigation plugins with some additional effects to enhance their appearance and
user experience is rather simple. The principles are explained in this chapter, as well as a
number of different approaches that we might want to use to obtain a menu plugin.

Chapter 11, Animation Plugins, discusses how fun-to-activate and nice-to-look-at animation
plugins play one of the most important roles when it comes to user interaction. Be it a
moving image or a bouncing shape, they are always worth the time spent coding them and
actually amuse the visitor. We will learn how to make things move, bounce, fade in and
away—nothing more, nothing less.

Chapter 12, Utility Plugins, shows how creating utility plugins (which can be easily used
thanks to jQuery's own internal structure and which allow for a very effective integration) is
a big plus. If we need some kind of function or method to take care of some repetitive task,
we could speed up the process with just a few lines of code.

Chapter 13, Top jQuery Plugins, is a selection of the top 10 plugins. It briefly shows how
they are customized on a website, their uses, their advantages and disadvantages, as well as
provides a basic documentation that readers can easily use and refer to when (and if) they
decide to mess with any of the plugins discussed in this chapter.

Appendix A, Tools, reference, and final recommendations, contains some useful
jQuery-related links and offline resources for further reference.

Who this book is for
This book is for anyone who wants to have a better understanding of the dynamics of jQuery
when plugins come into play, as well as for those who are willing to push jQuery to its limits
and develop awesome plugins to use on their websites. A little background information
about JavaScript and jQuery cannot harm anyone, but even very beginners can have a
chance to be introduced to the wonderful world of jQuery.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions on how to complete a procedure or task, we use:

Download from Wow! eBook <www.wowebook.com>

Preface

[�]

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use
of the include directive."

A block of code is set as follows:

jQuery.fn.txtHover = function() {
 return this.each(function() {
 jQuery(this).hover(function() {
 jQuery(this).text("Mouse hovered");
 });
 });
};

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "To enable the Web
Inspector, open Preferences, go to the Advanced tab, and select the Show develop
menu in the menu bar item".

Download from Wow! eBook <www.wowebook.com>

Preface

[�]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book

You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

Download from Wow! eBook <www.wowebook.com>

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Download from Wow! eBook <www.wowebook.com>

1
What is jQuery About?

With the ever increasing number of websites and an overall surge of web
professionals trying to make the Web a more beautiful and usable place,
JavaScript has become fairly popular amongst web designers and developers
in an attempt to overcome HTML and CSS shortcomings.

But, as we all know, JavaScript is a rather obtrusive language. It often happens
to mess things up and worsen what before was good markup if we don't pay
close attention to using unobtrusive JavaScript solutions. These are the reasons
why web designers (and web professionals in general) avoid plain JavaScript
like a plague and limit its usage to short and simple parts of the coding process.

Instead, jQuery has been designed with the aim of making it easier to navigate
a document, select Document Object Model (DOM) elements, handle events,
develop AJAX applications, and eventually smooth out any browser differences.

In this chapter, we will cover the following:

jQuery background

A jQuery introduction

How jQuery works

Extending jQuery using plugins

jQuery plugin basics

A reading material reference

Download from Wow! eBook <www.wowebook.com>

What is jQuery About?

[�]

A little background
Short after being officially presented by John Resig at BarCamp NYC in January 2006,
jQuery, though still "new", spread rather quickly. It has become, as of today, the most
used JavaScript library and is in use at 20 percent of the 10,000 biggest websites, including
Google, Digg, and WordPress.

The reason why jQuery was created is to be found in the lack of a JavaScript library providing
its users with a simple and easy-to-use syntax. In fact, at the time of its announcement,
jQuery was aiming to improve and simplify the use of selectors in JavaScript—a topic much
overlooked by libraries such as Behaviour.

The library then rapidly gained community interest and, shortly after the first plugin had
been developed, AJAX support and some new effects were added. Less than one year later,
the first sponsored developer joined the team and, as of now, four years later, companies
such as Nokia and Microsoft are actively supporting the open source library.

Its success, so huge and originating a fast growing movement, which has undoubtedly
contributed to promoting the library, has definitely helped jQuery to constantly improve
the quality of both its features and code. This has made it more and more popular over
time, especially amongst ASP.NET developers, as a 2009 survey points out (http://
codeclimber.net.nz/archive/2009/06/22/ajax-survey-2009-jquery-and-ms-
ajax-are-almost-tied.aspx).

The code, free and dual licensed under the MIT License and the GNU General Public License
(GPL) Version 2, proves its suitability to the purpose by being extremely lightweight and
cross-browser, supporting a variety of web applications and taking relatively little time
to execute.

jQuery: "the write less, do more JavaScript library"
Indeed, jQuery provides a simple and fast way to manipulate web pages, emphasizing the
interaction between JavaScript and HTML. Even a few lines of code can make the User
Interface (UI) more logical and way nicer to look at.

At first glance, we might think jQuery is only a different way to write JavaScript. However,
after spending some time dealing with documentation or examples, we realize it's much
more than a mere framework. It actually has features that make it easier and extremely
straightforward to handle DOM elements (traversal, modification, and elements selection),
deal with events (through specific calls), manipulate CSS, and create any type of effect and
animation (sliding, fading, or combined effects).

Download from Wow! eBook <www.wowebook.com>

Chapter 1

[�]

Moreover, one of the main, big benefits of using jQuery over plain JavaScript is that the
former hides the differences between browsers, at least to some level, relieving us of the
onerous task of differentiating the code depending on the user agent.

Ultimately, it provides easy methods to access AJAX functionalities and extend the library
itself through the use of plugins, which is the most powerful and useful way to interact
with the jQuery API.

How jQuery works
To get the most out of this book there are a couple of things that we should have clear
in mind:

How to get a simple jQuery script to run correctly

Understanding what callbacks are and how they work

Time for action – writing a basic jQuery script
We're going to create a simple script to check if everything is set up correctly and is
working properly.

1. Load the jQuery library; modify the src attribute of the <script> element to point
to the path of your jQuery file.

2. Write some sample code inside the "document ready" event statement, to display a
pop up message, as follows:

<html>
<head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-
 8" />
 <title>jQuery test</title>

 <script src="jquery.js" type="text/javascript"></script>
 <script type="text/javascript">
 $(document).ready(function() {
 // runs once page is loaded and ready to be manipulated
 alert("Hello world!");
 });
 </script>
</head>
<body>
 <center><h1>jQuery test</h1></center>
</body>
</html>

Download from Wow! eBook <www.wowebook.com>

What is jQuery About?

[10]

3. Open the page in your web browser of choice and check if everything is alright.

What just happened?
There's no need to spend time talking about stuff like loading JavaScript libraries or
displaying pop ups. Instead, it would make a good point to explain why, contrary to what
most JavaScript programmers will do instinctively, we avoid adding code to our program
once the window.onload event strikes—right after the page is loaded.

However, the JavaScript code isn't actually run until all images are finished downloading,
(which could last for quite a lot of time). Instead, jQuery's "document ready" event checks
the document and only waits until it's ready to be manipulated, leaving images and other
media to load at their own pace.

Time for action – callback and functions
Callbacks are functions that are passed as an argument to another function and are to be
executed at the appropriate time within the processing of the code (for example, when a
click event happens or when an AJAX update is ready to be sent).

1. Inside the "document ready" statement, write these two functions with callback
functions included:

$('#one').click(function() {
 $(this).hide(1000, function() {
 alert("hidden – callback function with one argument");
 });
});

$('#two').click(function() {
 $(this).hide(1000, myCallbackFunction);

Download from Wow! eBook <www.wowebook.com>

Chapter 1

[11]

});

function myCallbackFunction() {
 alert("hidden – callback function with no arguments");
}

2.	 Make sure you have two elements having IDs one and two respectively.

3.	 Point the web browser to this page to check the work done.

What just happened?
It's important to notice that, though the final result is the same, in this case, there is difference
in the way callbacks are to be handled depending on them having (or not having) arguments:

If the callbacks don't require arguments, writing the function name (not as a string,
nor with any parenthesis) is enough.

If the callbacks do have arguments to be passed along, we must register an
anonymous function as the callback function and then execute the actual
callback taking any number of arguments.

Another interesting point to understand is, in fact, what anonymous functions are and how
they behave.

Following the previous example, we may notice we have bound the click event directly to
a structure in which we defined a function. This is what is called an anonymous function. It
has no name and can be defined on the spot, resulting in a useful replacement for a function
that we might use only once (and that would be a waste of time to define) and then call in
two different places.

Extending jQuery: Plugins
Apart from offering a simple, yet effective, way of managing documents, elements, and
various scripts, jQuery also offers a mechanism for adding methods and extra functionalities
to the core module.

Thanks to this mechanism, we are also allowed to create new portions of code and add them
to our application everytime we need them. It results in a reusable resource that we don't
need to rewrite in our next page or project.

Additional methods and functions created making use of this structure are then bundled as
plugins. These can be subsequently used (and/or included) in new jQuery scripts, developed
by the plugin authors themselves and by other people as well (if the code is released in some
way—thus made publicly available for download and use).

Download from Wow! eBook <www.wowebook.com>

What is jQuery About?

[12]

The extremely easy-to-use Application Programming Interface (API) jQuery is built on
(evidently developed without forgetting the very beginner programmers out there, and the
immediate syntax jQuery made us all used to), combined with a bit of will, makes jQuery
plugin development not too harsh to regular script coders with a minimum of experience
in the field, as well as to those new to either plugin writing or jQuery internal mechanisms.

Of course, writing simple plugins is fairly easy, whereas a more complex plugin requires a
more advanced programming background and a certain proficiency with both JavaScript
and jQuery.

Also, it's important to know that most of the methods and functions jQuery is packaged
with were written by taking advantage of the jQuery plugin construct itself, thereby pushing
towards steady and frequent improvements of this complex plugin architecture.

Plugins basics
The question "So, what's all this about?" is likely to come naturally now.

In fact, this "plugin thing" may sound a little strange to newcomers, if they're not used to
dealing with languages or frameworks that allow for such extension of features and options.

To dissipate even the slightest doubt, we're going to understand what plugins are and
why they matter. Most importantly, we will see how is it possible to bring to light our own
creation, starting from scratch and eventually shaping our original idea into a more concrete,
working jQuery plugin.

Plugins are coded by making use of the jQuery API functions and methods, which are really
handy on many occasions. However, plain JavaScript often happens to be used heavily, since,
after all, it's the language jQuery is written in.

For those already familiar with jQuery syntax, methods, and features (everybody should
be, when considering writing a plugin), flipping through the pages of any jQuery-related
book is enough. However, if an inexperienced jQuery developer is reading this (even though
they usually jump straight to some random code, so they're more likely to never see this
part anyway), they'd better stop for a while and read some beginners' guide to jQuery
programming first.

Code generated using the jQuery built-in tools and eventually packaged into a plugin, must
then be included in the web page it's intended to work in, without forgetting that it requires
a compatible version of jQuery to run properly. More generally, in fact, plugins are extra
parts, not expected nor supported in any way by jQuery developers. These extra parts are
attached to the main functions and add in new user-generated functionalities working on
top of the core methods, functions, and options explicitly provided by the jQuery library
for third-party use.

Download from Wow! eBook <www.wowebook.com>

Chapter 1

[13]

It is true that plugins, especially the well known ones, are normally supported by their
authors. The authors are, usually, open to suggestions and feedback, and are constantly
doing their best to make their work compatible and working flawlessly with the latest
release of jQuery.

Suggested reading that could help greatly
Thinking of plugin development as a wild-goose chase is obviously overplaying it. Some
old wise man would probably say impossible is nothing, and he couldn't be more right. If
each of these resources, all of this documentation, and these tools are at hand, authoring a
plugin is a trifle requiring some special effort at the beginning along with a good knowledge
of the basis.

Books
Printed books are, even in our extremely digitalized era, one of the best sources to learn
from. Also, they come handy whenever we have to look something up and haven't the
possibility to switch to another window or just need to check something up—the book
is there, right next to our keyboard.

Learning jQuery 1.3
By Jonathan Chaffer and Karl Swedberg—Packt Publishing, 2009

Book page: http://www.packtpub.com/learning-jquery-1.3/book

TOC: http://www.packtpub.com/article/learning-jquery-1.3-table-of-
contents

"Revised and updated for
version 1.3 of jQuery, this
book teaches you the basics of
jQuery for adding interactions
and animations to your pages.
Even if previous attempts at
writing JavaScript have left you
baffled, this book will guide
you past the pitfalls associated
with AJAX, events, effects, and
advanced JavaScript language
features."

Download from Wow! eBook <www.wowebook.com>

What is jQuery About?

[14]

jQuery 1.4 Reference Guide
By Jonathan Chaffer and Karl Swedberg—Packt Publishing, 2010

Book page: http://www.packtpub.com/jquery-1-4-reference-guide/book

TOC: http://www.packtpub.com/toc/jquery-14-reference-guide-table-
contents

"Revised and updated for version
1.4 of jQuery, this book offers an
organized menu of every jQuery
method, function, and selector.
Each method and function is
introduced with a summary of its
syntax and a list of its parameters
and return value, followed by a
discussion, with examples where
applicable, to assist in getting the
most out of jQuery and avoiding
the pitfalls commonly associated
with JavaScript and other client-
side languages."

Online reference and documentation
Beside printed paper resources, some online papers are often of great help when we are in
need of some quick reference or other people's opinion as well. Here are some of the most
useful and well-known pages we'll become familiar with.

jQuery.com
The official home of jQuery, provides lots of useful links, tutorials, and documentation:

http://jquery.com

http://api.jquery.com

http://docs.jquery.com/Plugins/Authoring

http://plugins.jquery.com

Download from Wow! eBook <www.wowebook.com>

Chapter 1

[15]

Nettuts
There are many, many resources on this site. Have a look through the archives and search for
jQuery-related tutorials to get overwhelmed by articles upon articles.

They also have a very well made video series called jQuery for absolute beginners—worth
watching.

http://net.tutsplus.com/

http://net.tutsplus.com/articles/web-roundups/jquery-for-
absolute-beginners-video-series/ (jQuery video tutorials for beginners)

http://net.tutsplus.com/tutorials/javascript-ajax/15-resources-
to-get-you-started-with-jquery-from-scratch/ (list of interesting links
to get you started)

Cheatsheets
The following are some useful and practical references. These contain API references with
detailed description and some sample code. Everybody should try some of these and pick
the one that is most helpful to them.

http://www.cheat-sheets.org/#jQuery

http://woorkup.com/2009/09/26/jquery-1-3-visual-cheat-sheet/

http://www.javascripttoolbox.com/jquery/cheatsheet/

http://geek.michaelgrace.org/2009/06/jquery-cheat-sheet/

http://api.jquery.com/browser/ (downloadable AIR version)

Forums and mailing lists
There are many people out there happy to help. Asking in the following forums might be
useful to get different point of views for one problem and discuss topics of common interest:

http://forum.jquery.com/

http://www.sitepoint.com/forums/forumdisplay.php?f=15
(JavaScript forum)

http://old.nabble.com/jQuery-General-Discussion-f15494.html
(jQuery mailing lists)

http://groups.google.com/group/comp.lang.javascript/
(JavaScript group)

Download from Wow! eBook <www.wowebook.com>

What is jQuery About?

[16]

Pop quiz
1. What is the point of preferring jQuery's own "document ready" statement to the

more common, plain JavaScript window.onload?

A. It's easier to remember and does the very same thing.

B. The page loads faster.

C. We know when jQuery is ready to operate.

D. We don't have to load the whole library.

2. What are callback functions used for?

A. To make the code nicer to look at.

B. To make things even harder to understand.

C. For backwards compatibility.

D. To execute code right after another event has finished.

3. How can developers add functionalities to the core jQuery module?

A. By developing plugins.

B. By creating patches.

C. By asking the jQuery development team.

D. They can't.

4. Can plugins be used by anybody other than the programmer?

A. Absolutely.

B. Just friends.

C. Nope.

5. How can plugins make use of jQuery's own methods?

A. It's impossible to access jQuery methods.

B. Through the API.

C. Patching the original code.

D. Using a third-party framework.

Download from Wow! eBook <www.wowebook.com>

Chapter 1

[17]

Summary
To sum it all up, in this chapter we've learned a bit of background about the jQuery library, as
well as much interesting information related to its development and usage.

An important point is the one concerning basic jQuery usage, which should come naturally
by now. Writing plugins is not so different to coding jQuery scripts, and this should be clear,
but requires a little knowledge of what this all is about—we just started to get into this, more
will come later on!

The next chapter is all about jQuery plugin architecture, and will cover topics explaining how
plugins actually work and the main points of the plugin writing process.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

2
Plugins Basics

Even though we're going to discuss and cover plugin authoring in more depth,
we shouldn't forget plugins coming from other developers.

Also, knowing and understanding what makes plugins work and how one is
supposed to use them, apart from being an integral part of plugin creation, is
key to getting to a valuable and versatile final product everybody can use with
no difficulties, possibly modify, and eventually tweak so it fits their needs.

Specifically, in this chapter we're going to discuss:

Using plugins

Looking for and actually using a plugin

The structure of a plugin

Making a plugin work

Function plugins

Methods plugins

Basic plugins

A few key things to remember

Using plugins
While considering one of those many plugins available for download through the Web, the
very first question we might ask ourselves is: "Well, what am I supposed to do now?".

And, this is perfectly normal: we're just starting out after all!

Download from Wow! eBook <www.wowebook.com>

Plugins Basics

[20]

Time for action – looking for a plugin
Suppose we're facing an extremely common, often underestimated, problem: form
validation. How do we look for the best plugin that fits our needs?

1.	 Open up your web browser of choice, and leave it open. We're going to deal with
the Internet a lot!

2.	 Glancing through the online resources section at the end of Chapter 1, one link,
more than others, stands out—keeping in mind that the central topic of this book
is jQuery plugins: http://plugins.jquery.com.

3.	 As you can see, there are lots and lots of plugins. You can browse by category, by
name, or date. Or you can also search for a string.

4.	 There actually is a "Forms" category. However, it's more likely we bump into that
famous needle while jumping onto the haystack than that we find what we need
when we need it.

5.	 Enter "form validation" into the search field and start the search. An awful number
of pages come up, as if everybody wrote a form validation plugin. Anyway, pick the
Validation plugin by Jörn Zaefferer.

Download from Wow! eBook <www.wowebook.com>

Chapter 2

[21]

6.	 Skip to the Releases section, and download the most recent one.

7.	 Surprisingly enough, all we get is a ZIP file filled with some files. Actually, we expect
some files, such as the following, to be present in every package that we download:

jquery.PLUGINNAME.js

jquery.PLUGINNAME.pack.js

jquery.PLUGINNAME.min.js

These are the core plugin files: the uncompressed, packed, and
minified versions respectively.

changelog.txt

demo (directory) contains examples and sample plugin
implementations.

8.	 To see how everything works, unpack all of the files into a new directory and open
the demo directory on a web browser. Right after the URL, add example.html.

For example, if the path to the demo directory is:

http://localhost/~user/jquery-validate/demo/

It should then become:

http://localhost/~user/jquery-validate/demo/
example.html

Download from Wow! eBook <www.wowebook.com>

Plugins Basics

[22]

9.	 The example page should now display, and we are presented with a form
(in this particular case) that we can play with and check whether the plugin
is working properly.

10.	We can even enter data in the fields and see that, if we click on the Submit button
with some fields blank (or containing invalid information), a notice appears to warn
us of errors in the data.

11.	But how does this happen? Having a look at the source code for the example page is
extremely helpful and useful to our path to knowledge.

To see a page containing the source code of the current document,
we would normally press Ctrl + U in most browsers, or search
through the View menu for an option named similar to View source.

Download from Wow! eBook <www.wowebook.com>

Chapter 2

[23]

12.	Nothing should look new to us, as it's just plain HTML code with some JavaScript
mixed in it.

It's interesting to notice, though, that for a plugin to work, it is necessary to link
to the jQuery library and the plugin main file.

In this particular example, we find the following lines near the top:

<script src="../lib/jquery.js" type="text/javascript"></script>
<script src="../jquery.validate.js" type="text/javascript">
</script>

Plugins work only if jQuery has already been included!

13.	Also, there's another thing calling for our attention:

<script type="text/javascript">
$(document).ready(function() {
 $("#commentForm").validate();
});
</script>

We immediately recognize the "document ready" function and notice just one line
of code that is actually required to make the page behave in the user-friendly way
that we experienced just moments ago.

Actually, the plugin relies on the assignment of certain classes to each field, in order
to determine which validation rules are to be applied.

14.	As a side note, a shorthand version of the above code is often used and it reads:

$(function() {
 // do anything here
});

15.	Many plugins work in this simple way, and are thus programmed keeping in mind
ease of use and unobtrusiveness above all.

Obviously, there are often more functions the user can play with. Detailed
instructions are sometimes packaged along with the files or can be found online.

Download from Wow! eBook <www.wowebook.com>

Plugins Basics

[24]

What just happened?
Thanks to this first approach to the plugin universe, we got a pretty good understanding of
what the plugins we will write should look like in terms of look and feel.

It's no secret that simple but versatile and extensible code is easier to maintain, extend, and
understand for others (and eventually for ourselves after a couple of years). Modularization
is what jQuery coding standards evidently lean towards. These standards prefer a clean and
comprehensible code flow to a more chaotic, messy, and obscure program that would only
result in people getting confused and ultimately not using a program that, although perhaps
even superior in terms of options, lacks what is fundamental for a program: clarity.

Plugin developers follow along, trying to make their creations as easy to use and understand
as possible, providing a simple way to make use of the functionalities of their products.

It should also be clear by now that the jQuery website is the main resource for every jQuery
enthusiast and plugin developer, as it groups nearly everything dealing with the library, and
provides an excellent documentation for those needing help.

Have a go hero – get another example running
Just as we did before, download at least another plugin of your choice and have a look at
the files.

See it working and check the source code to look for similarities to the Validation plugin
source code. Write down what you find as part of plugin implementation and what is only
related to jQuery methods.

Eventually, take a look at what's inside the plugin code files.

Time for action – setting up our own page
We'll see in detail how to set up a working page using the Wayfarer tooltip plugin, which is a
simple but rather complete and reliable script to create tooltips (that is, whenever we hover
the mouse pointer over some text, a box pops out and provides some text or information).

You can download the Wayfarer tooltip plugin from its official page in the Plugins
directory on the jQuery website:

http://plugins.jquery.com/project/wayfarer-tooltip

Download from Wow! eBook <www.wowebook.com>

Chapter 2

[25]

1.	 Unpack the files contained in the plugin archive into a new directory and make sure
that you just keep what you really need: a copy of the jQuery library, the plugin's
own files, and a new HTML file that we have to create.

We should end up with the following files:

index.html: The HTML file on which we will work

jquery.js: The jQuery library

jquery.wtooltip.js: A plugin file containing code

2.	 Edit the index.html file, and add the links to both jquery.js and the
jquery.wtooltip.js file.

Don't forget the "document ready" statement (empty for now, but we're getting
there!). The file would look similar to the following:

<!DOCTYPE html>
<html>
<head>
<title>Wtooltip test</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <script src="jquery.js" type="text/javascript"></script>
 <script src="jquery.wtooltip.js" type="text/javascript">
 </script>
 <script type="text/javascript">
 $(document).ready(function() {
 // code will be put here
 });
 </script>
</head>
<body>
</body>
</html>

3.	 Inside the <body> tag, add a few links to experiment on.

One

Two

Three

Download from Wow! eBook <www.wowebook.com>

Plugins Basics

[26]

Also note that this plugin is buggy when used together with the native title
attribute. This is the reason we should rely on specifying the tooltip content as
shown in the next steps.

4.	 The page looks quite awful so far: a simple white page with three links and
nothing more.

5. Browsing the documentation, we find out that we can actually specify a content
option to create custom content:

$("a.link").wTooltip({content: "Hello, I'm a link!" });

The second link now shows the following tooltip when hovered upon:

6.	 Also, we had some dislike for the style of the tooltip. The documentation states
that there's the possibility to specify an ID and/or class for the tooltip and use CSS
instructions to change the look and feel of the elements:

$(document).ready(function() {
 $("a").wTooltip();
 $("a.link").wTooltip({ content: "Hello, I'm a link!" });
 $("a#one").wTooltip({
 content: "Hello, I'm a cool link!",
 id: "coolId",
 style: false // Removes all preset inline styles
 });
});

Following is the CSS code to obtain a colorful tooltip (far from artistic, though):

<style type="text/css" media="screen">
 #coolId {
 background-color: blue;
 padding: 5px;
 color: yellow;
 }
</style>

Download from Wow! eBook <www.wowebook.com>

Chapter 2

[27]

7.	 Hovering the mouse pointer over the first link will now result in a (supposedly)
nicer tooltip:

What just happened?
This has been our very first attempt to modify the default behavior of a plugin, to better
understand what we need to keep in mind when developing one.

During the course of the latest Time for action, a few key things should've got our
attention—more than others, at least.

Options are used to pass to the plugin additional information to process; they are to be
specified right after the call to the main plugin function.

There is no trouble passing one option; passing two or more is just a little bit different:
as we have just seen, a comma (,) separates two options and values are specified right
after a semicolon (:).

The last option does not need a comma at the end.

Options are written inside curly brackets ({ , }). Those quite familiar with JavaScript should
have immediately thought of objects!

Structure of a plugin
Before diving into plugin programming, it could be helpful to have a look at what a jQuery
plugin actually looks like.

Until now, we've just dealt with the methods alone, calling the plugin's own functions and
making it work with elements in the page.

Types of plugins

jQuery plugins can be divided into groups depending on their function.

Most jQuery plugins fall into the category of jQuery selection functions
($.fn.xxx), which allow to perform an operation on a set of elements.

However, we can also provide additional standalone functions and objects
($.xxx) or create custom selectors ($.expr.filters.xxx) and
animations ($.fx.step.xxx).

Download from Wow! eBook <www.wowebook.com>

Plugins Basics

[2�]

By having a look at jQuery's documentation pages about plugin authoring, we can find a
simple code snippet for a log-writing plugin.

Browsing the excellent documentation freely available on the jQuery
website is not only, obviously, helpful, but sometimes is fundamental
to learn how things actually work.

For this example, we are accessing the web page located at
http://docs.jquery.com/Plugins/Authoring—a
simple search will find it anyway.

Time for action – types of plugins: Function plugins
The difference between function plugins and method plugins may be unclear at first, but
we'll see they actually work in really different ways and are not used to accomplish the
same kind of task.

1.	 In order to create our function plugin, which will be able to report messages, we
need to create a new file and name it jquery.log.js.

Note that jquery.PLUGINNAME.js is the recommended file
name convention for jQuery plugins.

We can obviously name it in any other way we'd like, but in case we
are interested in submitting our new plugin to the official jQuery
plugin repository, correct file naming is very welcome.

2.	 Write the following code from the documentation page and then save the file. This
is our plugin. And as such, we should be able to recognize all the essential parts it
presents: first of all, we can immediately state this is a standalone function ($.xxx),
which does not return a jQuery object.

Download from Wow! eBook <www.wowebook.com>

Chapter 2

[2�]

Also, the anonymous function takes one argument (message), which is required,
and notifies the user by either logging the message to the console (if there is any
console) or using an alert box.

jQuery.log = function(message) {
if(window.console) {
 console.debug(message);
 }
 else {
 alert(message);
 }
};

3.	 Create a new HTML page, and set it up as you would do for any other plugin,
including the jquery.js file as well as our new plugin file jquery.log.js.

<script src="/path/to/jquery.js" type="text/javascript"></script>
<script src="/path/to/jquery.log.js" type="text/javascript">
</script>

4.	 Inside the "document ready" statement, add the following line:

$.log("hello world!");

Then save the page.

5.	 Open the page in a browser; the message should now display!

What just happened?
We all know the dollar symbol ($) is a synonym to the jQuery word.

This means that the following lines are different ways to say the same thing:

$.log("hello");
jQuery.log("hello");

Download from Wow! eBook <www.wowebook.com>

Plugins Basics

[30]

The only difference resides in compatibility (and possible ambiguity): while the dollar sign is
mainly used in scripts and such, for plugin writing (code inside plugins) the jQuery word is
preferred (unless we make use of closures, as described in the next chapter).

The reason is that the dollar sign is common to many other frameworks and libraries and
jQuery has been chosen by jQuery authors to avoid compatibility issues—so that nothing
breaks if other libraries are loaded as well.

When writing plugins, we want to make sure we are using jQuery's own methods and
functions, as other libraries may (and definitely do not) work the way we are expecting
them to behave. The jQuery word always (of course) refers to the jQuery library and,
therefore, does not interfere with any other object that we may have loaded either in
error or from necessity.

The other thing worthy of mention is the fact that we are used to calling methods attached
to an element, perhaps using that handy chainability feature and queuing dozens of them.

But in this case, we have created a new function that does not operate on a collection of
objects, and as such is attached to the jQuery object.

If we added a method instead, we would have called it with something like the following:

$.log("hello world!");

This results in the very same output.

Methods and functions

All new functions are attached to the jQuery object, and are not chainable.

On the other hand, new methods are attached to the jQuery.fn object,
which allows chainability.

Have a go hero – exceptions logging
With the help of JavaScript and the jQuery documentation pages, create a new document and
use the try–catch syntax to make the above plugin work and display the (eventual) exception.

Try using both the dollar sign ($) syntax and the jQuery object to check that there is no
difference between the two.

Download from Wow! eBook <www.wowebook.com>

Chapter 2

[31]

Time for action – types of plugins: Messing with methods
Method plugins are one of the most popular approaches to jQuery plugins and can also be
chained to other methods to perform more than one operation at once.

1.	 We're now going to create a selection plugin that changes background colors. To
do so, first create a new file called jquery.bgcolor.js into the same directory
as the log plugin.

We should have three files now, plus the jquery.js file eventually.

2.	 Open the newly created file, and paste in the following code:

jQuery.fn.bgcolor = function() {
 return this.each(function() {
 $(this).css("background-color", "orange");
 });
};

3.	 Edit the HTML document (index.html), and make sure you link to the jquery.
bgcolor.js file as well, after the jquery.log.js link.

We're starting to get quite a lot of scripts here. Let's have a look at
what we're linking to and why:

jquery.js: This is obviously required and fundamental.
Nothing would work without the main jQuery library file.

jquery.log.js: We are going to use this function in our
next example, too; leave it untouched.

jquery.bgcolor.js: Our new plugin, the one we're
going to code next.

Inline script with document ready statement and other
miscellaneous JavaScript code.

4.	 Write some HTML code in the document body. Make sure you have a valid element
in it and every element is given a unique ID. For example:

<div id="one">
Hello World
</div>

Download from Wow! eBook <www.wowebook.com>

Plugins Basics

[32]

5.	 We can now add the following to the "document ready" function to make the DIV
turn orange when the page loads and warn us with a pop up message:

$(document).ready(function() {
 $("#one").bgcolor() ;
 $.log("div#one is orange now!");
});

6.	 Finally, browse to the page URL and see our plugins in action! The DIV should now
be orange, and a message should let us know the change that has just been made.

What just happened?
As we have just seen in practice, methods can be attached to elements present on
the page, whereas functions are directly attached to the jQuery object and are in fact
accessed differently.

When dealing with methods, it's important to remember a few points:

Within the this.each loop, this refers to the current element being looped over.

Outside the loop (thus, in the outermost function), this refers to the current
instance of jQuery, that is, the entire element chain.

The method must return the jQuery object to support chainability. Note that
function plugins do not need this, as they won't be chainable.

The this.each loop is a means to go through all the matching elements on the page and
ultimately operate on each of them. This means if we had two HTML elements identified by
the very same tag (for example, two span elements), and we used the $("span") selector,
we would end up operating on the first span element first, and then on the second one,
letting ourselves wonder why we didn't use ids or classes instead (unless, of course, we
wanted to affect all span elements!).

Download from Wow! eBook <www.wowebook.com>

Chapter 2

[33]

Have a go hero – more colors
Modify the background-colorize plugin so that the user is able to specify the color they want
the background to turn into.

The user should be able to write:

$("div").bgcolor("red");

and see the DIV turn red, or:

$("div").bgcolor("blue");

and see the DIV turn blue.

Time for action – chaining
The concept of chaining, common in many scripting languages, such as Perl, is a very
important aspect of jQuery development, as it allows different methods to be executed
on the same selection with ease.

1.	 With the plugin created earlier, and modified so that a certain color can be selected
and used as the background color for the element, we can now try chaining two or
more calls to the same method with different colors and see what happens.

2.	 Set a new page up as we're used to, including all the necessary files. Inside the
"document ready" statement, use the plugin on some element, like this:

$("#id").bgcolor("red").bgcolor("blue");

Note that it will display a blue background, as that is the
latest one we have set.

If we had used two plugins with two different functions,
and had chained them, we would have seen both effects,
as normally expected.

3.	 For example, try to use the plugin together with any other method that may modify
the font size or color:

$("#id").bgcolor("red").css({ 'color': '#123' });

Download from Wow! eBook <www.wowebook.com>

Plugins Basics

[34]

4.	 We can now try to modify the script so the plugin does not return the jQuery object.
This way we cannot chain methods, as, after the first call, the other methods don't
have an object to operate on.

To prevent our plugin from returning the jQuery object, removing
the word return is, in this case, enough. The script will run
correctly and prevents the jQuery object from being returned.

5.	 If we try to re-run the above code, we will either get an error (if we have any sort of
console installed and enabled) or just see the script is not working.

What just happened?
As we understood earlier, chaining is allowed only if the method we are trying to attach
another call to does return the jQuery object.

The mechanism should be quite clear by now: if we don't return something, the other
method doesn't know what element, object, or whatever it should work on as it's presented
with nothing at all!

It's common practice to always return the jQuery object in every plugin that is intended to
deal with chaining or is to be put in other code, or do tasks people would chain things with,
so that nobody has to guess whether they can attach something else to the function or not.

As we're getting into creating more complex plugins, we'll probably completely forget about
function-based plugins, as we'll deal mainly with element modifications and enhancement.
Plugins of this type are often explicitly stated to allow for chainability as it's not uncommon
to chain functions as much as possible.

The reason of this massive chaining is, above all, the reduced time needed to run the script.
In fact, it's been calculated that the time a script with no chains runs is notably longer than
the time needed to run the very same script applying chaining, since the code doesn't have
to relocate the affected elements each time.

Other than that, chaining is often considered a better and cleaner way to write code. Even
those who are glancing at the source code of a script written taking advantage of chaining
understand how things work. However, by looking at a no-chaining script, one can get
confused more easily, as the code can be messy and calls might not all be in one place.

Download from Wow! eBook <www.wowebook.com>

Chapter 2

[35]

Have a go hero – put it all together
We have two plugins now: one that somehow reports messages, and the other one that is
able to change the background color of a chosen element to a color of our choice.

Wouldn't it be nice if, upon changing of the color, the plugin told us what elements were
affected by the change and what color was selected?

Try to implement a sort of logging system into the background colorizer plugin, making sure
you don't use just a simple alert, but make use of the log plugin instead.

Basic plugins examples
Having downloaded and played a bit with different plugins, we may now wonder what we
are actually able to accomplish with plugins.

The answer is, almost everything!

As we have experienced, writing plugins is actually quite simple and they are easily
modifiable to meet new criteria we may come up with even at a later time.

However, our experience has been with smaller plugins only. We still need to jump and
move on to bigger and more complex plugins, similar to the ones popular at the moment
that contribute greatly to simplifying the use of jQuery and JavaScript in general.

In fact, depending on our ability and the quality of our code and ideas, we can take
advantage of the jQuery API in many different ways, and develop plugins that help us dealing
with forms (as seen earlier), windows (that is, resizing, moving, whatever), media (displaying
images, playing videos and sounds), user interfaces (making the Web a nicer place), menus
(dynamically creating drop-down menus, sorting entries), and pretty much everything you
can access through the DOM.

Apart from the "field" our plugin will deal with, it's extremely important to follow the
suggested guidelines the jQuery team (and the community itself) has set, to make it
easier to find and correct possible errors and incompatibilities.

Those plugins we have developed and messed with earlier in this chapter are just simple
examples to show how things work in practice. The realization of an advanced plugin full of
functionalities and innovations is far from the aim of these first few chapters. We're now
establishing the basis for what will come, shaping our mind so that it's now able to reason
in a plugin- and object-oriented way, and starting to scratch the surface of coding standards
and plugin structure and usage.

Download from Wow! eBook <www.wowebook.com>

Plugins Basics

[36]

A few key things to remember
Very quickly, here are some key things that will come in handy later, when we look back for
some reference on this topic.

For every chapter, we should write down the most important things that we think will help
us and/or are of fundamental importance at any moment.

jQuery documentation is gold. Always go back to the documentation pages when in
trouble or in need of information. Reading it thoroughly wouldn't hurt either.

This might sound stupid, but always remember to link to the jquery.js file
(containing the jQuery library) or, no matter what, you might spend hours looking
for some error that justifies the script not running or working properly.

Prefer, when possible, the use of a centralized copy of the library that can be
cached. Google (http://code.google.com/apis/libraries/devguide.
html#jquery) offers an online version of some of the most popular libraries.
The more people use this, the more chances are that visitors to your website have
already downloaded jQuery and have the impression of the page loading faster.

Always prefer the "document ready" statement to any other non-jQuery functions
to check whether the page has already loaded or not.

This can never be stressed enough: plugins based on methods are completely
different to plugins based on functions.

Method plugins extend the jQuery.fn object.

Function plugins directly extends the jQuery object.

Method plugins do support chainability.

Function plugins do not support chainability.

Method plugins should always return the jQuery object (this, in the code),
to allow for chainability.

Pop quiz
1. The jQuery code is contained in the jquery.js file. When do we need to make

sure we have added a link to the library in our HTML documents?

 A) Whenever we deal with forms.

 B) Only if our scripts make use of some hidden functionalities of jQuery.

 C) Whenever we need jQuery (either for basic scripting or plugins).

 D) It's not required. We can check if we remember, as everything would work just
fine anyway.

Download from Wow! eBook <www.wowebook.com>

Chapter 2

[37]

2. jQuery guidelines state that plugins should be named in a certain way, to prevent
everybody from deliberately making up meaningless and misunderstandable
file names. Provided PLUGINNAME is the name of a plugin, how should the
file be named?

A. PLUGINNAME.js

B. PLUGINNAME.plugin.js

C. jquery.PLUGINNAME.js

D. PLUGINNAME.jquery.plugin.js

3. What does the term chainability refer to?

A. To the possibility of chaining CSS selectors to better operate on certain
elements.

B. To the possibility of chaining functions.

C. It's not important: this can be forgotten with no problems.

D. To the possibility of chaining methods.

4. Which type of plugin extends the jQuery object?

A. Method plugins.

B. Function plugins.

C. The jQuery object cannot be extended.

D. Any type of plugin.

5. Which type of plugin extends the jQuery.fn object?

A. Method plugins.

B. Function plugins.

C. The jQuery object cannot be extended.

D. Any type of plugin.

6. Which type of plugin should always return the jQuery object and why?

A. Method plugins, so that methods can then be chained whenever needed.

B. Function plugins, so that functions can then be chained whenever needed.

C. There is actually no need to return this object, as it's hardly used in plugin
development, after all.

D. Any type of plugin should return the jQuery object, since it's specified in the
jQuery plugin authoring guidelines.

Download from Wow! eBook <www.wowebook.com>

Plugins Basics

[3�]

7. Which type of plugin have we developed if we are able to chain it with other jQuery
built-in methods?

A. It's a method plugin, because method-based plugins are the only ones that
allow chainability.

B. It could be a function-based plugin, as well as a method-based one.

C. It's hard to say with no additional information on the type of object it returns.

D. It's a function-based plugin, because function-based plugins are those that
return the jQuery object—and thus permit subsequent concatenations.

8. Inside the each() loop, what does the word this stand for?

A. It cannot be used at all: as a reserved word its usage is only permitted
when writing scripts directly on the HTML document, inside the document
ready statement.

B. Nothing actually. It's a simple way of making the code look more elegant and
nicer to look at.

C. this is another way of referring to the jQuery object, whenever we are tired of
writing jQuery.

D. this is another way of referring to the current element chain.

9. Is the this.each loop necessary for plugins, and what does it do exactly?

A. It's probably a necessary part for most plugins, even though it's only needed by
the jQuery core for some internal routines and data handling.

B. It's required for the plugin to work properly, because the code wouldn't run if
the loop was missing.

C. It loops through all of the elements that match the CSS selectors and, one after
another, applies the same instructions specified in the method or function.

D. It is not required and can be omitted if we need more memory to process a
large amount of data.

10. When writing a plugin, what do the following symbols or words mean?

 $, this, $(this)

A. Alias to jQuery object, current element being processed (jQuery object), current
element being processed (DOM object).

B. Alias to jQuery object, current element being processed (DOM object), current
element being processed (jQuery object).

C. Current element being processed (DOM object), jQuery object, alias to
jQuery object.

D. jQuery object, current element being processed, alias to jQuery object.

Download from Wow! eBook <www.wowebook.com>

Chapter 2

[3�]

Summary
This chapter was all about plugins basics, proper usage, and problem solving.

We had a relatively quick overview of how plugins are developed, from scratch to an
easy-to-use and pretty intuitive tool users are able to make use of without many troubles.

Despite our little start in plugin authoring with a couple of tiny, with no expectation and
limited snippets of code, we managed to go through some code listings and understood the
difference between different types of plugins—some useful in certain situations, some that
are helpful in others.

However, apart from the obviously important rant about various plugins and their
applications, it's worthwhile to notice the fundamental role simple jQuery statements,
functions, and methods play in plugin coding. It's all based on the jQuery library after all!

This is the very first occasion one bumps into to either prove oneself a professional jQuery
plugin developer or an amateur programmer just starting out.

Either case, the goal is to get to the end with a good grasp on writing plugins that deal with
different fields of application—and we'll get to the end in some way!

After having our first nibbles of jQuery plugins, in the hope that everything will become
more interesting and tastier, the next chapter covers the practical realization of a bigger,
larger-scale plugin.

Nothing to be scared about, though; we'll just put into practice what we've learned so far,
with a little, yet decisive, twist to make the whole look better and behave more to our liking.

We'll learn how things really work in detail, with particular focus on the versatility and the
final goal of our very first plugin realization attempt, which will be, even though not so tricky
as you might expect, of certain interest—especially if we're keen on understanding how
every single component cooperates with others to make the whole, bigger picture stand out.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

3
Our First jQuery Plugin

Now that we have got some first experiences dealing with plugins, we'll start
off with our plugin creation adventure.

From now on, each chapter will cover a specific topic related to plugin creation,
meaning each chapter will be focused on developing a particular type of plugin
(that is, media plugins, form-related ones, and so on).

The current chapter, however, deals with the correct creation of a plugin of
any sort, to sort things out and make clear, once and for all, the basic outline
of a plugin and what is fundamental for successfully developing a plugin
from scratch.

This chapter will be about the following topics:

Defining our own default plugin structure

Setting the basics for our first plugin

Getting a step farther

Dealing with options

Using functions inside the plugin

Closures: making functions private

Download from Wow! eBook <www.wowebook.com>

Our First jQuery Plugin

[42]

Defining our own default plugin structure
To make things easier to remember and apply, we are going to start off with the definition of
what we will be referring to when speaking of the basic template that all the plugins we are
going to develop should conform to.

Actually, we have already had a quick look at it earlier in the previous chapter, but there's
something more definitely worth saying.

From now on, we will call the following code the default structure
for our plugins. This is what we will promptly copy and paste into
each file we're going to write a plugin into.

jQuery.fn.PLUGINNAME = function() {
 return this.each(function() {
 // code
 });
}

Needless to say, the this.each loop iterates all of the matching elements. We return the
jQuery object (this) to allow chaining. We extend the jQuery.fn object; all of the code
will be put inside the function.

Also:

The file name of every plugin we're going to develop will be
jquery.PLUGINNAME.js.

For the moment, remember to always avoid referring to the jQuery object with the
dollar sign ($), to prevent possible conflicts with other libraries. We'll get to using
aliases very soon.

All of the functions that we write to make our plugin work should be private
and not accessible from outside, in an attempt to avoid cluttering and possible
backwards incompatibility.

If not from the very start, at least at the end, a user will be able to specify options
to control the plugin behavior.

Default options for the plugin will be publicly accessible to allow for easier
customization with minimal code.

Download from Wow! eBook <www.wowebook.com>

Chapter 3

[43]

The directory that the plugin resides in will also contain two other files,
by default:

index.html: This is our test page.

jquery.js: This is the jQuery library that we need to make things work.

Setting the basics for our first plugin
As our first plugin, we might want to create something uncomplicated but somewhat
impressive: what about something that, when the cursor is hovering over an element,
substitutes the text contained with some words of our choice?

Time for action – our first plugin, Part I
Getting started in creating jQuery plugins in not difficult at all. For example, creating this
simple plugin should help us in understanding how things actually work.

1.	 Given that our plugin name is txtHover, create all the directories and files we need
by default, and copy over the jquery.js file.

2.	 Copy the default structure for our plugins to the plugin file and make sure the
function is named accordingly. It should look like this:

jQuery.fn.txtHover = function() {
 return this.each(function() {
 // code
 });
};

3.	 Nothing's easier to do than change the text contained in some element. Inside the
plugin function, write the following to let the trick happen:

jQuery(this).text("Text changed");

Download from Wow! eBook <www.wowebook.com>

Our First jQuery Plugin

[44]

4.	 To test this in action, we can modify the HTML document to look like this:

<!DOCTYPE html>
<html>
<head>
 <script src="jquery.js"></script>
 <script src="jquery.txthover.js"></script>
 <script>
 $(document).ready(function() {
 $("p#one").txtHover();
 });
 </script>
</head>
<body>
 <p id="one">Some text.</p>
</body>
</html>

5.	 Unfortunately, the result is neither fancy nor satisfactory—something we've
experienced earlier too. But we're just getting started; we won't stop here this time!

What just happened?
To tell the truth, there's nothing new in this piece of coding, as we've already analyzed the
previous code (or, at least, some very similar snippets) several times before.

The plugin is working correctly so far. When the page loads, the text is changed to what we
had defined into the plugin code.

However, there are a couple of things to pay attention to:

The function text() from the jQuery API expects either one or no arguments to
be passed: if there is no argument the function returns the current content
of the selected element. The text string passed as an argument substitutes the
element text otherwise.

There are, however, some similarities with the html() function, which treats the
text it operates on as if it were HTML code. That is, passing any tag to the html()
function results in having the element possibly containing other elements after the
operation (also, the same applies for getting HTML code from within the element),
whereas the this function will just treat the HTML code as plain text and not affect
any element hierarchy.

Download from Wow! eBook <www.wowebook.com>

Chapter 3

[45]

The fact that the text cannot be changed, unless we directly modify the code of
the plugin.

Getting a step farther
Despite the good realization, our plugin still misses the point. Our goal was to activate
the text substitution whenever the mouse pointer hovered over the text to be replaced,
whereas our current implementation does it right after the page is loaded.

We put it inside the "document ready" statement, after all!

Time for action – our first plugin, Part II: Hovering
By adding little pieces of code one at a time, we can easily understand what we are going
to do and which is the best layout for our plugin. Activating the plugin whenever the mouse
pointer hovers over the selected elements is surely another little step that adds up to reach
our final goal.

1.	 Back to our plugin file, we have to change the code so that the whole mechanism
activates when the hover event is triggered. jQuery provides a function called
hover(), which we can use to achieve our objective:

jQuery.fn.txtHover = function() {
 return this.each(function() {
 jQuery(this).hover(function() {
 jQuery(this).text("Mouse hovered");
 });
 });
};

2.	 Now, on to testing. Once the mouse pointer hovers over the text, it is effectively
replaced by our string. But even if the mouse is moved, the text doesn't revert
to the original.

Download from Wow! eBook <www.wowebook.com>

Our First jQuery Plugin

[46]

3.	 In fact, looking at the hover documentation, we see the function can also take a
second argument, that is, the pointer to a function to be executed when the mouse
goes off the element.

Our modified code will now look like the following:

jQuery.fn.txtHover = function() {
 return this.each(function() {
 var oldTxt = jQuery(this).text();

 jQuery(this).hover(function() {
 jQuery(this).text("Mouse hover");
 }, function() {
 jQuery(this).text(oldTxt);
 });
 });
};

4.	 The result is somewhat better now: the text is changed when we leave the
pointer on the paragraph, and is changed again to its original form once the
pointer is moved away.

What just happened?
We might be a little more satisfied with this evolution of our plugin, even though it's far
from complete.

Its functioning is fairly straightforward: we have made use of a variable (oldTxt) to
store the old content, and we then have proceeded to using two anonymous functions
(function(){ }), passed as arguments to the hover() function, to handle the mouse
hover event (write our string) and the mouse out event (text back to original).

There's still something to do though:

We have used far too many instances of $(this) in our code and, on a larger scale
application, a lot of memory would be wasted this way. It will be incredibly better
for performance to make up a variable and use it every time we refer to the
element with $(this).

The text cannot be changed, unless we directly modify the code of the plugin.

Download from Wow! eBook <www.wowebook.com>

Chapter 3

[47]

Have a go hero – html () versus text ()
Read the documentation for the html() function.

Create a plugin that, once the mouse pointer hovers over an element, displays the HTML
code of its content. The content should then change back to normal once the mouse
pointer is moved away from that space.

What happens if the html() and text() functions are used one inside
the other, that is, $(sel).text($(sel).html()) or $(sel).
html($(sel).text())? Just play around a little bit.

Dealing with options
An aspect that we left out in the creation of our plugin is the one concerning options and,
thus, customization.

Implementing options not only will drastically increase the flexibility and ease of
customization of the plugin, but will also quicken later modifications by the author himself
or herself, as it results in the whole code being simpler to understand and the important bits
would be all grouped together.

Time for action – our first plugin, Part III: Options
To allow for options to be specified and the behavior of our plugin to be customized and
modified to users' liking, we need options.

1.	 The code we use for our plugin will be modified to look like the following:

jQuery.fn.txtHover = function(options) {
 var defaults = {
 txt: 'Mouse hover'
 };

 var o = jQuery.extend(defaults, options);

 return this.each(function() {
 var e = jQuery(this);
 var oldTxt = e.text();

Download from Wow! eBook <www.wowebook.com>

Our First jQuery Plugin

[4�]

 e.hover(function() {
 e.text(o.txt);
 }, function() {
 e.text(oldTxt);
 });
 });
};

2.	 We are allowed to change the txt option now. In case we don't, though, the default
value will be used (Mouse hover).

The document ready statement should now contain the following:

$(document).ready(function() {
 $("p#one").txtHover({ txt: 'This is some custom text.' });
});

3.	 And the result would look something like this, with the text changed to whatever
we like:

What just happened?
The structure we've just used to get our plugin packed with options is quite flexible and
easily extensible.

We first made sure the function definition would include an argument (that is, options) for
settings to be specified. The options object must be formatted following the inline object
creation method (that is, { option1: value1, option2: value2 } and so on).

But what would happen if the user does not specify any options? Or, if we are dealing with a
number of options, wouldn't writing the same lines of code everytime to reset option values
be incredibly annoying?

Instead, we create a new (plain) object (default) in which we store the default values
of options we plan on accepting as valid. This way, users may check if the default value is
acceptable to them and either leave it untouched (the plugin will then use the default value)
or change it to their needs, resulting in the plugin making use of the customized value for
that particular option.

The very next line is the way jQuery is instructed to combine the two objects. If any of
the options we are going to make use of later on in the code (and want the user to be able
to modify) is not passed to the function, we use the default one instead.

Download from Wow! eBook <www.wowebook.com>

Chapter 3

[4�]

What we'll get at the end is another object (o) with the values we need for the plugin
to work with. From this moment onwards, we'll use this object's values to access options
we need during development.

The rest of the code is left untouched, except for the o.txt part that replaces the old string.
Users are now able to choose what they want to replace the original content with.

Also, the keyword $(this), much abused of in the previous version, has been replaced
with the variable e, into which all of the information of the element has been copied.
In a large-scale environment, this little tweak will result in a huge boost to the
script performance.

Have a go hero – adding colors
We have seen in the previous chapters how accessing and modifying an element's
CSS properties through the css() method is not only possible, but quite simple and
straightforward too.

The css() method works very much like the text() and html() ones do, with the
difference being that it always expects at least one argument to be passed, as the first
parameter is responsible for selecting which property we want to get access to.

Using your knowledge about the above-mentioned method and what you've just learned
from the latest Time for action, extend the plugin so it accepts two other options: fgColor
and bgColor.

Needless to say, these two options make the users able to change the element's background
and foreground color whenever the mouse pointer hovers over the element. When the
mouse pointer gets off the area, colors should revert to original.

Keep in mind that, if either of those two options is not passed, the user
does not intend to have the color(s) changed at all and they should
appear as they already are, not just as black text on white background!

Using functions inside the plugin
Repetitive tasks are boring. And this is the reason functions exist. However, how do functions
interact with the code of a plugin?

Very simply, every function declared outside the plugin's own code (note that defining a
function right inside it is allowed) is accessible as it would be in any other piece of code.

Download from Wow! eBook <www.wowebook.com>

Our First jQuery Plugin

[50]

Time for action – our first plugin, Part IV: Functions
For testing reasons only, we need a debug function to tell us what happens at certain points
when the code runs. This will also help us in understanding when and how functions are
accessible from a particular portion of code.

1.	 We could add the following function (from our previous log script) at the very
beginning of the plugin file:

function _debug(msg)
{
 if(window.console) {
 console.debug(msg);
 } else {
 alert(msg);
 }
}

jQuery.fn.txtHover = function(options) {
 // the rest of the code
 // goes here
};

2.	 Our plugin would then read (with the addition of some debug facilities):

function _debug(msg)
{
 if(window.console) {
 console.debug(msg);
 } else {
 alert(msg);
 }
}

jQuery.fn.txtHover = function(options) {
 var defaults = {
 txt: 'Mouse hover'
 };

 var o = jQuery.extend(defaults, options);

 return this.each (function() {
 var e = jQuery(this);
 var oldTxt = e.text();

 e.hover(function() {
 _debug ("Mouse hovers #" + e.attr('id')
 + " (\"" + o.txt + "\")");

Download from Wow! eBook <www.wowebook.com>

Chapter 3

[51]

 e.text(o.txt);
 }, function() {
 _debug("Mouse leaves #" + e.attr('id'));
 e.text(oldTxt);
 });
 });
};

3.	 There's still some trouble, though: what happens if we use the debug function
outside the plugin file?

We expect it not to be accessible or to be somehow unusable, as we have declared it
inside the plugin file and it was intended for use inside the plugin only.

If we try to put a sample call right after the "document ready" statement, we can see
the function to be actually accessible from everywhere in the code.

$(document).ready(function() {
 _debug("Hello, this is a test call.");
 $("p#one").txtHover({ txt: 'This is some custom text.' });
});

Download from Wow! eBook <www.wowebook.com>

Our First jQuery Plugin

[52]

What just happened?
Dealing with functions shouldn't be much of a problem. We are supposed to be used to
making heavy use of them.

However, the point is their accessibility from different parts of the code. At first, we create
the function(s) we need without thinking about the number of problems that could arise if
we do not protect them and struggle to make the functions we use in our plugin private
(that is, not accessible from outside our plugin).

What we must be aware of are the issues we could bump into when defining a certain
function in our plugin file without thinking that the very same name we originally thought
would have been unique (for example, _debug) has been used somewhere else in the
code to name a function whose goal is completely different.

The correct (or, at least, expected) behavior of our plugin is compromised and for no reason
should we permit such a stupid error.

Another point of particular interest, in case it's not been noticed before, is the way the o
object is used everywhere at any point of time that we need to refer to the current set of
options, whereas e is the current element being processed.

Have a go hero – experimenting with functions
Play around with functions. Try to define some functions nearly everywhere it is possible and
try calling them from other parts of the code to see what happens, which functions override
which, and the difference between calls to functions with one or more arguments.

Also, make sure you notice where (that is, in what parts of code) a function can be defined
and where, instead, it's not possible.

Is it possible to define a function inside the document ready statement? If so, what would it
mean and is there any advantage?

Closures: Making functions private
With the aim of keeping our own functions, those needed by our plugin only, private, so that
others cannot access and misuse them, we're going on to discovering closures.

Download from Wow! eBook <www.wowebook.com>

Chapter 3

[53]

Time for action – our first plugin, Part V: Closures
Closures make it possible for the developer (that is, us) to avoid creating functions in
the main namespace and keep them private to avoid problems with naming, backward
compatibility issues, and excessive cluttering.

1.	 We're now going to add a function to the index.html file, called _debug.

This new function will take one argument (just like our plugin's one) and will do
nothing more than just display an alert reporting some random text.

function _debug(argument)
{
 // Note we don't make use of the 'argument'
 // we just need it for the function to look
 // exactly the same as our plugin's debug function
 alert("Hi, this is the fake debug function.");
}

$(document).ready(function() {
 _debug("Hello, this is a test call.");
 $("p#one").txtHover({ txt: 'This is some custom text.' });
});

2.	 Now, on loading the page, how does the result appear? Is it what you expected?
The newly created function completely replaced our plugin's function, making
the behavior definitely not the same.

3.	 What would happen if we use closures to prevent this type of inconvenience
from happening?

Here is how closures work. This is how the plugin code should look now:

(function($) {
 function _debug(msg)
 {
 if(window.console) {

Download from Wow! eBook <www.wowebook.com>

Our First jQuery Plugin

[54]

 console.debug(msg);
 } else {
 alert (msg);
 }
 };

 jQuery.fn.txtHover = function(options) {
 var defaults = {
 txt: 'Mouse hover'
 };

 var o = jQuery.extend(defaults, options);

 return this.each(function() {
 var e = jQuery(this);
 var oldTxt = e.text();

 e.hover(function() {
 _debug("Mouse hovers #" + e.attr('id')
 + " (\"" + o.txt + "\")");
 e.text(o.txt);
 }, function() {
 _debug("Mouse leaves #" + e.attr('id'));
 e.text(oldTxt);
 });
 });
 };
})(jQuery)

4.	 And here is how the page looks now, after we have modified the plugin code. When
the page loads, we get to see the pop up:

Download from Wow! eBook <www.wowebook.com>

Chapter 3

[55]

But when we hover the mouse pointer over the text we actually see what we
expected to see:

What just happened?
Using closures is definitely a best practice that everyone should follow.

Not only does it allow functions to be defined for the plugin only (keeping them private and
not accessible from outside the plugin's code), but many other advantages come as well.

The way in which closures operate is quite simple after all. By creating a closure, several
things actually happen: first of all, closures create a function with $ as its parameter.

Then that function is immediately called with the value jQuery, which gets mapped onto
the $, letting us use the $ sign without the fear of creating any kind of issue.

When we first defined the fake debug function, we probably didn't think it would've
overwritten the whole content of the plugin's original function. Perhaps it would've given an
error; or just the first call (the one right before the plugin call) would've been compromised.

Actually, this behavior is perfectly explainable. Looking at the file structure, we see the
jquery.js file is included first, then comes the plugin, and finally the inline script part
containing the fake function and the "document ready" statement.

This means the latest part quite naturally overwrites the earlier ones.

Thus, having defined the fake debug function at the very end, it obviously overwrites the old
debug function coming before it.

The whole example would have been quite different if we had put the above-mentioned
function before the inclusion of the plugin file, in which case the dynamics would have been
worthy of notice.

Download from Wow! eBook <www.wowebook.com>

Our First jQuery Plugin

[56]

In the latest version, the original debug function is kept private and thus the fake function
cannot overwrite it, resulting in the correct behavior that we would've expected from
the very beginning. As the page loads, a pop up is displayed with some text, whereas the
hovering effect still works correctly thanks to closures preventing the functions declared
inside them from being publicly visible.

Have a go hero – avoid conflicts
With closures in mind, try to replace all the jQuery words with the dollar sign, as if you
where using normal jQuery syntax in a normal script.

If you even try to throw in some conflicts over the dollar sign, which is often used by other
libraries as well (for example, by including another JavaScript library and using both to get
something done), you can see the plugin still works correctly.

In fact, apart from keeping functions to themselves, this closure alias the word jQuery to the
symbol $, acting as the noConflict() function would on the plugin code.

This is particularly handy because it allows the normal syntax, the one we're all most used
to and that comes out without thinking, to be used with no worries at all.

Pop quiz
1. The dollar symbol ($) is a very handy way that we normally make use of in everyday

scripting. We've just noticed it's not so good when speaking of plugin development,
though. Why is that?

A. It's an aesthetic reason, nothing less, nothing more.

B. The dollar sign is going to be lacking support for plugin development in the
upcoming version of jQuery.

C. Just a matter of taste after all.

D. Because of possible conflicts with other libraries that use the same symbol with
a different meaning.

2. How many arguments does the hover() function take and what are they used for?

A. It takes two arguments. The first is a callback to the function to call when the
mouse pointer hovers. The second one is the callback for when the mouse
pointer leaves.

B. It takes two arguments. The first is a callback to the function to call when
the mouse pointer leaves. The second one is the callback for when the mouse
pointer hovers.

Download from Wow! eBook <www.wowebook.com>

Chapter 3

[57]

C. It takes one argument. It is a callback to the function to call when the mouse
pointer hovers.

D. It takes one argument. It is a callback to the function to call when the mouse
pointer leaves.

3. When cycling through a series of elements, what is the problem, if any,
with using the same selector too many times (for example, using $(this) or
$("div span .sample") repeatedly)?

A. No problems actually.

B. It's rather time consuming.

C. It slows down the plugin, and using the very same selector many times is
pointless. We'd do better to use a variable to which we assign the element
selected once only.

D. It takes up too much space and, when we're about to minimize the plugin, we
may face trouble because of the excessive size of the script.

4. jQuery provides methods to access the content of an element: text() and
html(). What's the main difference between the two, in terms of the value
returned upon a call?

A. No difference at all, text() is the old version of html() and, as such, is going
to be flagged as out of date very soon.

B. No difference at all, html() is the old version of text() and, as such, is going
to be flagged as out of date very soon.

C. text() returns the combined text contents of the element, whereas html()
gets the HTML contents of the element.

D. text() can be used with older versions of jQuery as well, whereas html() is
for use with jQuery versions 1.4 and newer.

5. What do options, in terms of practical advantages, do for both the regular user and
plugin author?

A. They only provide more flexibility for the user, with no particular advantages for
the developer, who actually has to struggle more to deliver a pointless feature a
lot of people look for nevertheless.

B. Options provide an easy and accessible way to change the plugin behavior and
customize, tweak, and modify its interaction with the HTML document, for
example, changing execution times, speed, and so on.

Download from Wow! eBook <www.wowebook.com>

Our First jQuery Plugin

[5�]

C. They only cause the user to be overwhelmed with lots and lots of useless
settings to change, which often result in the plugin not working correctly and/or
older versions not compatible with the newest ones.

D. No advantages whatsoever.

6. How can functions be used inside plugins, and are they available outside plugins?

A. They're used just like they would be normally, and they can be accessed by
other functions or blocks of code if we don't make them private somehow.

B. Unfortunately, functions cannot be used inside plugins and we must find
another way to avoid repeating code over and over.

C. There are some required keywords to make use of when calling functions, or
they won't work inside a plugin's code.

D. Functions behave as they normally would, and are not accessible by outside
code by default.

7. Closures are very important. Besides defining clearly where a plugin begins and
ends, they also have other key functions that make them almost necessary for
plugin development.

In fact, what do we achieve by applying closures to our plugin's code?

A. They only keep functions private.

B. Closures help dealing with options from other plugins.

C. They provide an easy way to access jQuery's API from within the plugin code, so
that it's safer to use functions and aliasing the jQuery keyword.

D. We can keep functions private and make use of the aliased dollar symbol as we
would normally.

Download from Wow! eBook <www.wowebook.com>

Chapter 3

[5�]

Summary
This chapter has covered, step by step, the creation of a simple plugin. At the very beginning,
the plugin was really simple and far from being well thought out. However, by the end of the
process we ended up with a simple plugin, capable of doing several things, and a structure
evolving constantly after each step.

Perhaps without having noticed, we've taken care of event handling (for example, the
hovering effect, with its hover and leave events), customization, modification, user
personalization (making a set of options available and thinking about the default values),
security, compatibility issues, and aliasing (making the plugin work within closures and
having the possibility to use the dollar sign ($) again).

From the next chapter onwards, we'll put what we have learned until now into practice.
We will develop various types of plugins whose aim is to provide a simple yet practical and
professional solution to many topics that developers often have to deal with, when they're
about to create a website and put it into the best condition to show off its content and design.

With special focus on the media aspect of the web, the next three chapters make a huge
point on the creation of media plugins. These are those jQuery plugins that have something
to do with various media types: namely images of all kinds, audio files (yes, music included),
and videos—mostly from online streaming websites, which are the number one source for
embedding short videos into web pages.

The next chapter is all about image handling and processing.

Our aim at the end of it is creating a simple image gallery, which is a great way to view
images on the Web: big and quickly.

We will, just as we've done until now, have a step-by-step approach to the problem, thinking
about possible solutions and solving problems we'll certainly face with the help of online
documentation and previous examples.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

4
Media Plugins: Images Plugins

We've just seen how to create a plugin from scratch—a real plugin. The plugin
works in every little part of its code and actually does something that can be
useful to somebody with little to no effort required in modifying the code. We
made sure it allows for easy modifications and tweaks as well as a simple setup.

The fun still has to begin, though.

Wandering on the Internet, we've all come across some really neat plugins,
each showcasing some fancy graphics, a number of surprising effects, hundreds
of features, and incredible control of its application.

But the most intriguing thing, which should hit the plugin developers in their
heart, is the code and how the fancy graphics and surprising effects have
been realized.

Contrary to popular belief, there's nothing wrong in looking through the
existing code to get inspiration and fresh ideas from the author. Shame makes
its appearance whenever we copy (that is, copy and paste—Ctrl + C, Ctrl + V)
that code instead of thinking about it and maybe finding a different, perhaps
better, way of accomplishing the very same task.

This chapter will cover the following topics:

Plugin overview

Handling images

Centering things

Putting it all together

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Images Plugins

[62]

From this chapter on, we'll cover a series of topics related to plugin development
(obviously!), one for each chapter, each focusing on a specific area particularly relevant
and of relatively common usage.

For example, we're now going to analyze some types of plugins dealing with images.
We'll create our very own Lightbox-like plugin to handle different thumbnails in the same
document and display a real-size preview without the need to load another page.

In the next two chapters, we'll handle different media types (namely, audio and video files)
instead and will have, by the end, a good understanding of how media files can be embedded
and manipulated in a web page using the jQuery library.

Plugin overview
Of course, we cannot analyze in great detail each of the hundreds of image-related plugins
available on the Internet. Instead, we'll focus on a certain type of plugin: preferring quality
over quantity in our journey through plugins. We'll end up with a few plugins less, but we're
sure each of them is complete and of great quality.

And, most importantly, we'll have understood how things actually work, making us able
to create all of the other plugins with no trouble whatsoever. In fact, once we understand
the basics, it's just a matter of time and practice to get the confidence required to develop
complex plugins with more features and make them visually more appealing.

The plugin we're going to create is really close to (though simpler than) the Lightbox plugin.
This type of plugin is so popular that it's almost impossible that anyone has never heard
about it or seen it in action.

Basically, when an image is displayed on the page, a very handy possibility is offered to the
user. Clicking on the (small) thumbnail will cause the image to get bigger and bigger until
it reaches its original dimensions and is visible at full size on the very same page that the
smaller one's found!

The image will thus overlay other elements on the page. Therefore, there is no need to load
another page (or even make a blog page obscenely long) because of some pictures from our
latest holiday.

Some versions also have the possibility to load another image upon the click of the mouse,
so that a scaled-down copy of the picture can be displayed in place of the original and the
page load times are sensitively reduced, especially when dealing with a discrete number
of images.

Whenever the user clicks outside the image, on another picture, or on some close button
placed nearby, the big photo disappears and the page is back to normal.

Download from Wow! eBook <www.wowebook.com>

Chapter 4

[63]

If you have never seen one of these plugins working, some of these web pages would be
worth a visit. You will begin to understand how this whole thing can be done and what our
final result is supposed to look like:

http://leandrovieira.com/projects/jquery/lightbox/

http://static.railstips.org/orderedlist/demos/fancy-zoom-
jquery/

http://jquery.com/demo/thickbox/

Now that we know what we are after, a quick summary of what the plugin needs to do, and
what we need to keep in mind, is really necessary:

Full-size previews must pop out at the center of the browser window, lying on top of
other page elements.

Images will disappear whenever we either click on another image to see its bigger
version or click on the picture itself.

A close button can be added later on.

Effects (such as sliding, fading, and zooming) are no big deal to implement.

Also, options should be made available for better plugin personalization.

The above points made clear, we can now proceed and get our hands dirty!

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Images Plugins

[64]

Handling images
The goal of our plugin is, so to speak, handling the selected images in the document
and apply to them the styling and effects we like the most and feel appropriate to
accomplish our preset task.

Time for action – showing images
Images play a big role today, and creating a plugin that is capable of manipulate image
elements is a challenging task, which will result in a nice-looking and useful plugin.

1.	 First off, set up our default plugin structure. That is, create a new directory
called something like "gallery" containing two files: index.html and
jquery.gallery.js. Also, copy over the jquery.js file.

2.	 Paste the following code into the plugin file (jquery.gallery.js):

(function($) {
 jQuery.fn.gallery = function() {
 return this.each(function() {
 var e = $(this);

 e.click(function() {
 // show big preview
 });
 });
 };
})(jQuery)

3.	 Gather a couple of images from somewhere on your hard drive and copy them into
the gallery directory.

Download from Wow! eBook <www.wowebook.com>

Chapter 4

[65]

4.	 Make the necessary modifications so that the HTML document index.html looks
like this:

<!DOCTYPE html>
<html>
<head>
 <script src="jquery.js" type="text/javascript"></script>
 <script src="jquery.gallery.js" type="text/javascript"></
script>>
 <script type="text/javascript">
 $(document).ready(function() {
 $("img").gallery();
 });
 </script>
</head>
<body>

</body>
</html>

5.	 The page, loaded in a browser, will present the three images in their original
size. However, clicking on one of them—to which the gallery() plugin is
applied—doesn't do anything. We still need to write the code!

6.	 At this stage, the most important thing to take care of and understand is how the
image is supposed to get bigger all at once.

Actually, what we'll show is not the image itself, but rather a copy of the original
picture, obtained by either reading the src attribute of the image and inserting
another image with different properties (such as, greater height or another position)
or using a jQuery API function called clone().

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Images Plugins

[66]

The documentation for clone() is available on the jQuery website
(http://api.jquery.com/clone/) and can be summarized by
saying that it creates a copy of the set of matched elements.

7.	 Once we have cloned the image we have clicked on, we also have to insert the copy
somewhere in the document, or it won't show up in any way!

We have a list of many different methods we can choose from that all insert
elements somewhere else in the page (such as append() and appendTo(),
before(), after(), insertBefore() and insertAfter(), prepend() and
prependTo()) and you'd better read the corresponding entry to understand what
each does differently from the others.

What we'll make use of for our plugin to work is the prependTo() method, to add
the cloned image right after the body tag.

8.	 With chaining, the code should now look like this:

(function($) {
 jQuery.fn.gallery = function() {
 return this.each(function() {
 var e = $(this);

 e.click(function() {
 e.clone().prependTo("body");
 });
 });
 };
})(jQuery)

9.	 What we get at this point is something just so deceitfully close to the end result.
This will make us rather happy with what we've done with just a few lines of code.

Download from Wow! eBook <www.wowebook.com>

Chapter 4

[67]

Have a go hero – could it have been done differently?
Now that we got something tangible to look at, is prependTo() the only method that
makes it possible to obtain something similar to what we accomplished just moments ago?

Try out the other above-mentioned functions and check—first by their description and the
examples provided online—whether they're suitable or not for this situation.

Time for action – one step more
Despite the good results obtained so far, we're still facing some difficulties. One of them
is, without doubt, the fact the images that are supposed to look like thumbnails are still of
original size!

1.	 jQuery provides a set of functions—height() and width()—that directly operate
on the selected element's CSS height and width properties respectively.

At this point, it's a matter of seconds to add the following simple code snippet right
before the click event in our code:

e.height(128); // make 128 the height in pixels of the image
 // that will display on the page and on which
 // we have to click to show the bigger version

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Images Plugins

[6�]

2.	 Another problem arises though. Now, when we click on a picture (correctly sized,
beware!), even the supposedly big alternative looks small. We cloned it, after all!

3.	 The solution would be to store the dimensions of the image before we change the
size to 128px and use that saved value for the cloned version:

(function($) {
 jQuery.fn.gallery = function() {
 return this.each(function() {
 var e = $(this);
 var h = e.height();

 e.height(128);

 e.click(function() {
 e.clone()
 .height(h)
 .prependTo("body");
 });
 });
 };
})(jQuery)

4.	 Also, our aim was to see one big image at a time. As yet we're not able to make the
picture disappear either by clicking on it or by clicking on another image. The images
would simply lay one over each other, with the latest one clicked on top.

Download from Wow! eBook <www.wowebook.com>

Chapter 4

[6�]

5.	 Manipulating some CSS would help tremendously.

Firstly, we have to assign a brand new ID to the element on which the user has
clicked on, so we now know what needs to be made to disappear when another
image in the set is clicked.

Also, we might want to use absolute positioning, so that the image is not subject
to any previously set margins and/or padding:

(function($) {
 jQuery.fn.gallery = function() {
 return this.each(function() {
 var e = $(this);
 var h = e.height();

 e.height(128);

 e.click(function() {
 // removes the currently displayed preview (if any)
 $("#myGalleryId").remove();

 e.clone()
 .attr("id", "myGalleryId")
 .height(h)
 .css("position", "absolute")
 .prependTo("body")
 .click(function() {
 // whenever we click on the big preview,
 // it will disappear.
 // NOTE $(this) always refers to the currently
 // selected element, the preview in this case
 $(this).remove()
 });
 });
 });
 };
})(jQuery)

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Images Plugins

[70]

6.	 There's one last problem now: centering the image, which we'll solve by writing
another plugin and putting the two of them together.

Have a go hero – implementing options
Yes, it's this moment again: options are important, and so should we treat them.

Add a couple of options using the structure we have previously learned and used. Examples
could be making the user able to specify the size of the small thumbnail and the ID of the
preview, in case myGalleryId has already been used in some other application.

Centering things
The problem with centering things is real. In this case, it resides in the fact that we don't
know the size of the image before we actually happen to deal with it and are about to
center it according to the screen (or window) dimensions.

Time for action – turning theory into code
A possible, and simple, way of making things work out nicely would be, logically, to set the
top margin of the picture (which is positioned using absolute values—beware, or this whole
thing wouldn't work!) to half the height of the window minus half the height of the image
itself. And the same goes for the space that there must be at both sides, which corresponds
to half the width of the window minus half the width of the picture.

1.	 As we're about to create another plugin, we need another JavaScript file
(jquery.center.js will do) to be placed inside the gallery directory and included
from the index file as well. Each plugin then carries out a single function and things
are decoupled.

Download from Wow! eBook <www.wowebook.com>

Chapter 4

[71]

2.	 The code, really simple, is very similar to its description, as we actually do nothing
more than modify some CSS code so that we end up positioning the element exactly
where we need it: at the center of the window.

(function($) {
 jQuery.fn.center = function() {
 return this.each (function() {
 var e = $(this);

 e.css({
 position: 'absolute',
 top: ($(window).height() - $(this).height()) / 2 +
 $(window).scrollTop() + "px",
 left: ($(window).width() - $(this).width()) / 2 +
 $(window).scrollLeft() + "px"
 });
 });
 };
})(jQuery);

3. Note we have selected and used the document ($(window)) that represents the
entire page currently visible in the browser window.

4. Don't forget to include the new script to the HTML file, before the gallery plugin,
since we need it for our implementation, but after the jQuery library.

The head tag will now look like the following:

<head>
 <script src="jquery.js"></script>
 <script src="jquery.center.js"></script>
 <script src="jquery.gallery.js"></script>
 <script>
 $(document).ready(function() {
 $("img").gallery();
 });
 </script>
</head>

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Images Plugins

[72]

Have a go hero – vertical and horizontal centering
We've now understood how centering works.

It would be both nice and handy, though, to be able to center the element either vertically
or horizontally.

This can be accomplished by adding a couple of Boolean options to the plugin (default to
true) so users can choose, at their will, to have the picture centered horizontally, vertically,
or at the very center of the window.

Putting it all together
Yes, we've finally got to the point where we're supposed to join the two scripts to get one
final, definitive plugin that we can have fun with!

And, surprisingly enough, this step is as simple as saying it.

Time for action – the final step
What we're left to do is just apply the center() method we've just developed to our
existing code that works in all of its parts, but cannot center the element on its own.

1.	 Back to our jquery.gallery.js file; the only thing we need to do to have
the picture centered is edit the code so that a call to the center() method
is implemented.

(function($) {
 jQuery.fn.gallery = function() {
 return this.each (function() {
 var e = $(this);
 var h = e.height();

 e.height(128);

 e.click(function() {
 // removes the currently displayed preview (if any)
 $("#myGalleryId").remove();

 e.clone()
 .attr("id", "myGalleryId")
 .height(h)
 .prependTo("body")
 .center()

Download from Wow! eBook <www.wowebook.com>

Chapter 4

[73]

 .click(function() {
 $(this).remove()
 });
 });
 });
 };
})(jQuery)

2.	 Note that, since absolute positioning is taken care of in the center plugin, there is no
need to state it again in our gallery plugin.

Have a go hero – looks is everything
Even though we have a neatly working plugin, we'll never be out of things to do.

To obtain something worth using, a nice looking user interface is a fundamental requirement.
Nobody, ourselves included, will ever use such a graphical failure as our plugin, offering
nothing more than modestly well-written code that makes the whole actually work.

After all, what would you prefer to work with: something that just works but looks ugly or
something that just works and is quite nice to look at?

Playing around with some CSS can definitely make things look a little better. Shadows
(basically, a semi-transparent background image, slightly shifted relative to the picture
preview) can be added, so could be a small close button placed on the top right-hand
corner of the image.

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Images Plugins

[74]

After having added some CSS code for the pop-up image, you should include it as
a complementary CSS file (such as jquery.gallery.css), as this is common
occurrence for plugins.

Pop quiz
1. In our implementation, we have decided to make use of the prependTo() method

instead of a variety of others.

Apart from the effective final results, what differences are actually present between
prependTo() and the very similar (in spelling, too) prepend()?

A. There is no difference: prependTo() is an alias for the prepend() method.

B. They perform the same task; with prepend() the selector to which the method
is applied is the container into which the content is inserted. In contrast, the
prependTo() method takes as argument the container.

C. They perform the same task; with prependTo() the selector to which the
method is applied is the container into which the content is inserted. In
contrast, the prepend() method takes as argument the container.

D. Even though their names are very similar, the two methods perform tasks
completely different and doubts will hardly arise regarding their behavior.

2. Regarding the usage of $(this) inside the second click event in our plugin
(the one that lets us make the picture disappear, so to speak), to what extent
can this behavior be considered as following the usual jQuery rules?

Isn't the expression $(this) always referred to the top most element which is
first selected?

A. $(this) always refers to the current element being processed.

B. Depending on where it is used, $(this) can refer to different elements.

C. This particular behavior is in fact strange, but justified by the special plugin
structure that often makes the code act differently from what one would expect.

D. Actually, this isn't even supposed to work. I wonder how this is possible?

3. Couldn't the centering and gallery plugins be both combined into one unique file
to save space?

A. Several plugins can be grouped together to fit into one file only to the detriment
of code tidiness and organization.

B. Several plugins can be written and stored into the same file, with no particular
consequences. It's just a matter of personal liking.

Download from Wow! eBook <www.wowebook.com>

Chapter 4

[75]

C. "One plugin, one file" is one of the so-called "Golden rules of jQuery".

D. The more code you can fit into one plugin, even with some strange function
calls and arrangements, the better.

Summary
Reaching the end of the chapter, a good number of new notions should have been presented
to and learned by you.

Most importantly, the step-by-step structure should have helped somewhat in directing the
flow of thoughts correctly and collecting the best ideas to obtain a quality final product.

The key points, fundamental for going ahead with no problems of any kind, are, obviously,
related to the nature of this type of plugins and their practical realization. We're surely
already tired of hearing about it but, no matter what, the importance of flexibility,
extensibility, and modularity is always underestimated, and for some reason is still
unknown to mankind.

This thought applies to media plugins more than others, as the images, audio files, and
videos are more likely to undergo some sort of modification in terms of accessibility or
even realization of basic plugin functions.

By no means should this discussion be considered exhaustive, as we've focused on a
particular type of image-related plugin only. There are hundreds of different plugins out
there. The approach that a developer is required to assume in order to successfully get his or
her job done may be more or less similar to the one we had to take into consideration during
the realization of the above-mentioned plugin.

For some further information about the type of image-related plugins one can bump into in
the "real" world. I suggest you check out the following links, which collect a bunch of jQuery
plugins ranging from gallery-style ones to sliders, layering, image modification, and such:

14 jQuery plugins for working with images:

http://sixrevisions.com/resources/14-jquery-plugins-for-
working-with-images/

Top jQuery photo slideshow / gallery plugins:

http://blueprintds.com/2009/01/20/top-14-jquery-photo-
slideshow-gallery-plugins/

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Images Plugins

[76]

15 amazing jQuery image gallery / slideshow plugins and tutorials:

http://speckyboy.com/2009/06/03/15-amazing-jquery-image-
galleryslideshow-plugins-and-tutorials/

Top 10 jQuery image plugins:

http://www.reynoldsftw.com/2009/02/jquery-top-10-image-
presentation-plugins/

Forgetting about images for a while, we're about to explore and learn about the surprising
world of sounds. The next chapter will discuss the undoubtedly attractive way of handling
sounds and audio files with jQuery, explaining how to realize a simple plugin that will
astonish everybody because of its uniqueness.

Download from Wow! eBook <www.wowebook.com>

5
Media Plugins: Audio Plugins

Media plugins play a huge and a much more important role in today's highly
digitalized world. How many times can Internet addicts open up their web
browser, read some pages, and not stumble on some interesting pictures that
promptly catch their eyes?

And what about videos? Short, sometimes funny, videos are all over the
network. Everybody happens to, sooner or later, click on the play button
and check what one of these intriguing short movies is all about.

The same happens to audio files. The use of songs, and sounds in general,
on web pages is spreading very quickly. Many websites offering streaming
capabilities are seeing the light, resulting in more and more users being
given the opportunity to listen to some music online.

Also, sounds can be included on web pages to provide music samples, in a
totally different fashion than the streaming-oriented websites have made
us used to.

Thinking about a page with a tiny music player is enough to get the idea of
what we're going to end up with, right after we have solved some common
problems plugin developers usually face when dealing with the topic of
media plugins, following a somewhat individual approach.

Specifically speaking, this chapter will discuss the following:

Plugin overview

Handling audio files

The player

Putting the plugin together

Styling and multiple players

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Audio Plugins

[7�]

Plugin overview
The very first thing that we might want to do is actually get a good understanding of what
the plugin we look forward to developing will be like at the end of the programming process
and how we intend to proceed with its creation.

Analyzing some of the audio-related plugin examples that are covered in the following
sections, and spending some time toying with the samples found online, will surely help
make the entire process clearer in our mind, which may be a little confused right now.

Our goal is to play audio files, and nothing can be more useful than having a look at the
marvelous jPlayer plugin (http://www.happyworm.com/jquery/jplayer/). It provides
an easy-to-use wrapper to control audio files in every way possible on our web page. It
provides keen attention to details such as CSS styling and HTML5 support.

Indeed, we need our player to cater for a few basic requirements. Namely, we want it to be
able to:

Play MP3 files:

We'll be happy with playing MP3 files only for the moment. Though, we'll
see making it able to handle different types of file is not much work after all.

Pause the file reproduction:

Definitely, this is a key feature we don't want to miss.

Stop sound reproduction:

Another basic feature we must include.

Control volume (increase, decrease, and mute):

Music can get annoying or users can for any reason decide to adjust the
volume of the emitted sounds.

Download from Wow! eBook <www.wowebook.com>

Chapter 5

[7�]

Handling audio files
Basically, there are two ways in which audio files can be played (and manipulated):

With HTML5 tags

Using Flash

The HTML5 solution looks quite promising: simple to embed, simple to modify and
manipulate. However, there's a problem. This HTML5 spec is not yet finalized, and there
are endless discussions about which codec to support natively and why.

Currently, five attributes have been specified:

src (URL): Content source

preload (bool): Whether the audio will be loaded at page load, and will be ready
to run

autoplay (bool): Whether the file should play as soon as it can

loop (bool): If present, whether the audio will start over again once finished

controls (bool): Whether the browser should display default player controls

The HTML code will then result in something simple:

<!DOCTYPE html>
<html>
<head>
 <title>HTML5 audio</title>
</head>
<body>
 <audio id="player" src="sound.ogg" controls></audio>
</body>
</html>

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Audio Plugins

[�0]

The plugin is nothing more than a simple set of functions that make use of the built-in
methods and attributes from the HTML5 spec:

play(): To play the file

pause(): To pause the file

buffered (read only): Specifies the start and end time of the buffered part of
the file

canPlayType(): To check whether the file type is specified or not

Unfortunately, not all browsers support this spec, and many differences exist when speaking
of supported file types for major browsers as well:

Browser Ogg Vorbis MP3 WAV

Firefox 3.5 P P

Opera 10 P

Chrome 3 P P

Safari 4 P P

Internet Explorer 8

On the other hand, Flash-based audio management is somewhat more accessible with all
browsers, provided that a Flash plugin is installed or can be downloaded and installed.

The player
For our plugin to work, we need a Flash player that lets us load and play the desired files, in
our case MP3 songs and sounds.

A very common choice for this type of plugin is the JW Player (http://www.
longtailvideo.com/players/jw-flv-player/), on which a number of
media-related plugins are based.

A free version of the player can be downloaded from the website, as well as some good
documentation and many examples.

Time for action – creating the Flash player
Creating the basic Flash player and layout is really straightforward. All we need to do is
download the Flash component and the JavaScript library to make sure that the player
and our code can exchange information the right way.

Download from Wow! eBook <www.wowebook.com>

Chapter 5

[�1]

1.	 Download the JW Player (Version 5.2 as of the time of writing) from
http://www.longtailvideo.com/players/jw-flv-player/ and copy
both the player.swf and swfobject.js files into our new plugin's directory.
Also, create the other files that we usually need to build a plugin and copy an
MP3 file of your choice.

2.	 We are going to have a simple player with three links:

Play button

Pause button

Mute button

Open the HTML file, and paste the following code:

<!DOCTYPE html>
<html>
<head>
 <script src="swfobject.js"></"></script>
 <script src="jquery.js"></script>
 <script src="jquery.audio.js"></script>
 <script>
 $(document).ready(function() {
 // code
 });
 </script>
</head>
<body>
 <div id="player">Player will show here</div>
 <div id="status">Paused</div>
 Play
 Pause
 Toggle mute
</body>
</html>

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Audio Plugins

[�2]

3.	 Now let's see some information about the files we need:

swfobject.js is a script for detecting and embedding the Flash
player, developed by Geoff Stearns (http://code.google.com/
p/swfobject/).

We need to interface the JW Player with basic JavaScript functions so
that we can operate the Flash player effectively. Therefore we need the
following files:

jquery.js is what we're working with. Once we have the basic
JavaScript bound, we can use jQuery to easily access and modify
everything in our document and make the plugin useful in
some way.

jquery.audio.js is our plugin core code. Everything will be
handled from here.

Putting the plugin together
Now that we have the layout done, and the JW Player files are in order and ready to be used,
only the actual plugin code is left to write.

What we need to do in order to make everything work fine is:

1. Create the SWFObject to handle the audio file.

2. Add the desired (and required) variables to the above-mentioned object to specify
file path, buttons visibility, and so on.

3. Place the SWFObject in the right HTML container.

4. Create a JavaScript object to manage the SWFObject through the swfobject.js
JavaScript wrapper.

5. Add click events so that every time we click on a link, the respective action will be
reflected on the player.

Download from Wow! eBook <www.wowebook.com>

Chapter 5

[�3]

Time for action – creating the plugin
Now that we have the layout done and the JW Player files are in order and ready to be used,
only the actual plugin code is left to write.

1.	 In the jquery.audio.js file, the following code is needed to obtain the normal
plugin structure:

(function($) {

 $.fn.player = function(options) {
 var defaults = {
 swf: "player.swf",
 pId: "myPlayer",
 mp3: "sound.mp3",
 mute: false,
 pPlay: "play",
 pPause: "pause",
 pMute: "mute",
 pStatus: "status",
 pStatusTextPlaying: "***Playing***",
 pStatusTextPaused: "---Paused---"
 };

 var o = jQuery.extend(defaults, options);

 return this.each(function() {
 // do something
 });
 };
})(jQuery)

2.	 We have some default options already set, which will be what we'll need later, when
dealing with elements and SWFObjects.

swf: This is the player path, which can be changed if you prefer
another SWF Player instead of JW Player.

pId: This is the SWFObject ID. We'll use this to refer to the player
object in our code.

mp3: This is the path to the MP3 file. It's been set to a file for
testing purposes, but if the file is missing the program should let
the user know with some sort of message.

mute: Sounds can be heard by default.

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Audio Plugins

[�4]

3.	 In addition, the following code is required to create the SWF player and put it inside
the #player DIV we created earlier:

var playerObject = new SWFObject(o.swf, o.pId, "0", "0", "9");
playerObject.addVariable("file", o.mp3);
playerObject.addVariable("icons","false");
playerObject.write($(this).attr('id'));

4.	 The first line makes use of the SWFObject library and is a way to construct the object
using player.swf (o.swf).

The so-created object is then assigned the o.pId as its ID (by default, it
reads myPlayer but this value can be changed at runtime), whereas the
following three arguments, which are integers, represent, respectively,
player width, height, and the Flash version the content is published for.

As a side note, many more options are available, but not required, and can
be seen in the official documentation: http://code.google.com/p/
swfobject/wiki/documentation.

We have set both width and height to zero so the player doesn't actually
show (but it's there, right inside the #player DIV!) and we can use
JavaScript controls instead.

5.	 Next, we are going to bind events to something that has to do with the player's own
behavior. Paste the following code right after the instruction we have already added
to the each() loop.

// unfortunately, this is the only way to select the player
// object,
// since we need a JavaScript object to make the SWFObject work
var player = $('#' + o.pId)[0];

// we'll need these later
var mute = o.mute;
var playing = false;
var status = $("#"+o.pStatus);
status.addClass("status-container");

$("#"+o.pPlay).click(function() {
 player.sendEvent("PLAY", "true");
 status.text(o.pStatusTextPlaying);
 playing = true;

 // return false to prevent default processing of the link
 return false;

Download from Wow! eBook <www.wowebook.com>

Chapter 5

[�5]

}).addClass("play-button");
 $("#"+o.pPause).click(function() {
 player.sendEvent("PLAY", "false");
 status.text(o.pStatusTextPaused);
 playing = false;

 // return false to prevent default processing of the link
 return false;
}).addClass("pause-button");
 $("#"+o.pMute).click(function() {
 if(mute) {
 player.sendEvent("mute", "false");
 mute = false;
 }
 else {
 player.sendEvent("mute", "true");
 mute = true;
 }

 // return false to prevent default processing of the link
 return false;
}).addClass("mute-button");

6.	 With these last modifications, the plugin is ready to work and can be implemented
in our web page with the following code:

<script>
 $(document).ready(function() {
 $("#player").player({ mp3: "some-music.mp3" });
 });
</script>

Unfortunately, the JW Player API still has some problems in terms of stability. For
this reason, a little tweaking may be needed in order to get the plugin to work.

Some support can be obtained from the official website
(http://longtailvideo.com) and developer pages, as well as some
third-party forums dealing with this kind of issue.

Have a look at some of the links in Appendix A.

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Audio Plugins

[�6]

Have a go hero – add controls
We've only seen a couple of controls for the JW Player.

Actually there are many more, allowing for a more detailed and precise control of the media
file and providing the basics for some possible extension of functionalities such as progress
bars, volume sliders, or similar.

With the JW Player documentation at hand (http://developer.longtailvideo.
com/trac/wiki/Player5Api#Plugins2) and after having read the Slider plugin
documentation pages (http://docs.jquery.com/UI/Slider) try to create a volume
slider to adjust volume during the reproduction. Keep in mind that a volume (<int>)
method from the JW Player makes the whole process easier.

Styling and multiple players
Alright, our player works. But it looks awful!

Fortunately, we can add some CSS styling to our plugin and make it a little nicer looking.
After all, it's just HTML code and some JavaScript!

The point here is to make the CSS code as little intrusive as possible but, at the same time,
very flexible. We might have multiple players on the very same page at once and we want
them to look exactly the same.

Time for action – adding support for multiple players
The possibility to have multiple players on the same page is really nice, but what do we
do with all those controls and similar stuff we have selected using specific IDs? And, most
importantly, how can we count the actual number of players on the page?

1.	 First of all, we must identify each player with a unique ID.

Also, we have to keep track of the number of players we have set up.

Our plugin code will then need a variable (say, count) starting at zero and
put right after the closure—thus the second line, after the one reading
(function($) {, so it is available to all of our code.

This way, whenever we include the plugin file into some HTML document
and load the page, the variable is initialized at zero, meaning the first player
is ready to be set up.

Download from Wow! eBook <www.wowebook.com>

Chapter 5

[�7]

At the very end of the each loop, the count variable is to be increased by
one. The next player can now be set up.

The value of count can then be appended to any ID referring to the player,
so we end up with a unique reference for that object.

2.	 Another problem is the various control links. If we leave the code as it is, we only
have three links actually working for all players, and it surely isn't the best way to
make things work smoothly.

Instead, we can let the user specify the ID of the three controls, while we
modify our plugin code to act accordingly

3.	 Last but not least, if we want all the players to look the same, some type of class
must be assigned to control links so that they can look similar when CSS styling
is applied.

4.	 To sum it all up, after the above-mentioned modifications, our code will look like
the following:

(function($) {
 var count = 0;

 $.fn.player = function(options) {
 var defaults = {
 swf: "player.swf",
 pId: "myPlayer",
 mp3: "sound.mp3",
 mute: false,
 pPlay: "play",
 pPause: "pause",
 pMute: "mute",
 pStatus: "status",
 pStatusTextPlaying: "***Playing***",
 pStatusTextPaused: "---Paused---"
 };

 var o = jQuery.extend(defaults, options);

 return this.each(function() {
 var playerObject = new SWFObject(o.swf, o.pId + count, "0",
 "0", "9");
 playerObject.addVariable("file", o.mp3);
 playerObject.addVariable("icons", "false");
 playerObject.write($(this).attr('id'));
 $(this).addClass("player-container");

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Audio Plugins

[��]

 var player = $('#' + o.pId + count)[0]

 var mute = o.mute;
 var playing = false;
 var status = $("#"+o.pStatus);
 status.addClass("status-container");

 $("#"+o.pPlay).click(function() {
 player.sendEvent("PLAY", "true");
 status.text(o.pStatusTextPlaying);

 playing = true;
 }).addClass("play-button");

 $("#"+o.pPause).click(function() {
 player.sendEvent("PLAY", "false");
 status.text(o.pStatusTextPaused);

 playing = false;
 }).addClass("pause-button");

 $("#"+o.pMute).click(function() {
 if (mute) {
 player.sendEvent("mute", "false");
 mute = 0;
 }
 else {
 player.sendEvent("mute", "true");
 mute = 1;
 }
 }).addClass("mute-button");

 count ++;
 });
 };
})(jQuery)

5.	 We can now create any number of players, paying attention to the ID of the
elements specified as controls. Creating two players (player0 and player1) is
enough to check the correct functioning of our plugin. Also pay attention to the
creation of the necessary elements that will work as player controls.

<script>
 $(document).ready(function() {
 // All default: plays sound.mp3 and uses #play, #pause, #mute
 $("#player0").player();

Download from Wow! eBook <www.wowebook.com>

Chapter 5

[��]

 // Default values changed to our liking: of course other
 // elements (with ids #play1, #pause1 and #mute1)
 // are needed for the magic to happen
 $("#player1").player({ mp3: "some-music.mp3",
 pStatus: "status1",
 pPlay: "play1",
 pPause: "pause1",
 pMute: "mute1" });

 });
</script>

Have a go hero – manage multiple sounds
Having the possibility of creating multiple players objects on the same page also implies more
than one event can be sent to other players—leading to multiple sounds played at once.

Find a way (create a function or whatever) to pause all players prior to one of them starting
to play its sound.

Time for action – adding some style
We've finally come to the point of making our player(s) better looking. Some simple CSS
instructions will help our plugin to create much better looking Flash players.

1.	 The following CSS code, to be put inside a separate CSS file (jquery.audio.css),
will make the players look different:

 .player-container {
 display: none;
 }

 .status-container {
 border-left: 7px solid #06f;
 padding-left: 7px;
 margin-top: 20px;
 color: #666;
 }

 .play-button {
 border-left: 7px solid #06f;
 padding-left: 7px;
 margin-left: 0px !important;
 }

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Audio Plugins

[�0]

 a {
 text-decoration: none;
 border-bottom: 1px solid #06f;
 margin-left: -7px;
 padding-left: 7px;
 padding-right: 7px;
 color: #89f;
 }

The players will now look as follows:

2.	 Playing a bit with CSS can then lead to obtaining a completely different appearance.
Also, keep in mind that a number of surprising effects can be obtained using
jQuery's own methods and plugins!

Have a go hero – improve controls
This is a text-based MP3 player, which you can style however you want.

It would be great if some buttons were displayed though, thereby adding that bit of spice
and modern look that every player should have.

Have some fun with images, CSS, and jQuery effects in order to end up with a stylish media
player, looking like the one that we saw at the start of the chapter: jPlayer.

Your end product should provide sliders for both time playing and volume controls, as well as
buttons to play, pause, stop, and mute.

Download from Wow! eBook <www.wowebook.com>

Chapter 5

[�1]

Pop quiz
1. Apart from the use of Flash to make the audio plugin work, we've seen how the

HTML5 <audio> tag makes it really easy for everybody to include their media files
into a web page.

For what reason have we decided not to use this handy method to embed
audio files?

A. Browsers support different codecs, and debates are still open regarding which
one to use for the next HTML release.

B. The uncertainty of the spec and the fact that nothing can be considered
definitive makes every implementation highly subject to possible future
modifications.

C. Both of the above.

D. Neither of the above.

2. On the other hand, what inconveniences does the use of Flash imply?

A. It's not always reliable due to its lack of support in all major browsers and its
proprietary license.

B. It's very difficult to work with, since it does not provide any simple way
of interaction.

C. Many people don't like it, relegating the use of Flash to a niche of
"elite" programmers.

D. It needs the Flash plugin to be run and, as such, some people might not have it
installed and thus are not able to see Flash content.

3. What does the SWFObject library actually do? Why do we need it to make our
plugin work?

A. It offers optimized embed methods and a JavaScript API to work with Flash
related information.

B. It's needed by JW Player, the Flash player of our choice, to make everything
work smoothly and with no problems whatsoever.

C. It's a jQuery plugin to work with Flash objects.

D. None of the above.

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Audio Plugins

[�2]

4. How can multiple players be handled if we only have one method for them all?

A. They can't. And that's why this plugin won't work without some additional code.

B. We've provided the user with the choice of the IDs to be used, so multiple
players can be inserted into the same page and controlled by different elements.

C. For every new SWFObject we create, a new ID is also created and automatically
assigned to the right element in the HTML code.

D. Thanks to CSS rules we can style player elements so they look the same even
though they have different IDs.

5. Can we use another SWF player instead of JW Player, which we currently make
use of?

A. Yes, and the code remains the same.

B. Yes, but we have to change the code.

C. No, JW Player is the only one that can play MP3 files using the Flash plugin.

D. Yes, but a new Flash executable has to be compiled for this to happen.

Summary
As we have noticed, audio files are fairly tough to deal with.

Not only do we have little to no options and possibilities to explore, but we also have to face
the fact that there actually is no easy way to get around the problem of handling media files
such as sounds and videos.

HTML5 looks very promising, as it provides easier handling, especially for media objects.
But unfortunately it's not yet a standard and very few developers choose to implement
this technology over the most widespread ones.

The use of Flash is, in fact, the common choice for developers who want to get this area
clearer in their minds. However, as we have stated earlier, this technology is far from perfect
and available for everybody, since many people consciously turn the Flash plugin off or don't
install it because of either license-related issues (closed source), or lack of support or interest
on their part.

Flash is also quite complex to deal with because of its nature. Once you have the executable,
options are very limited, not to mention the impossibility for non-Flash developers,
to change anything or get their own player (in this case) or (more generally speaking)
application done by themselves.

Download from Wow! eBook <www.wowebook.com>

Chapter 5

[�3]

Some JavaScript wrappers do exist, though, to help dealing with certain Flash players.
For example, the JW Player wrapper is compatible with SWFObject, but not with many
of the others out there, which, obviously, cannot provide an interface for every existing
media player.

The problem with SWFObject is it's written in plain JavaScript and, as such, cannot smoothly
cooperate with jQuery, especially due to the stability issues that affect the JW Player API.

A jQuery plugin exists that is based off the latest SWFObject. It provides some of its
functionalities and lets you embed Flash content into any web page with jQuery-friendly
syntax and methods.

A closer look at its home page (http://jquery.thewikies.com/swfobject/) might be
useful out of curiosity, even though no real documentation can be found on those pages.

Regarding this topic, it is also difficult to provide a list of plugins to toy with as a reference.
There are very few and they all rely on some Flash Player of their choice and another
JavaScript library to control the player behavior.

With videos, in the next chapter, things will go better for sure, as some more possibilities are
available and ready to be checked out.

The realization of a videos plugin is quite similar to what we've done so far, as media files
in general (thus, audio and video files) are often treated the same, meaning media players
are usually able to play both videos and sounds, depending on the file type they recognize
upon initialization.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

6
Media Plugins: Video Plugins

We've said it over and over again, however, as technology evolves, media
content plays an important role in our everyday life.

Having dealt with images and audio in the previous chapters, we are now going
to explore the last of the multimedia-type plugins that we intended to develop:
video plugins.

For some time now, video files have been getting really popular. Many websites
offering some kind of support and/or space to host videos and then send the
links to friends and relatives have seen great success (think YouTube, Vimeo,
and so on).

These type of websites offer the user a super-simple, quick way to make it
possible for other people (even from far, far away places and unknown to
the video owner) to watch a short film (for free), send in comments (thus,
interacting with other users), and eventually include the video itself onto
their own web page, to help spreading the content over the Web.

The following are the topics we're going to deal with in this chapter:

Plugin overview

Handling video files

Embedding YouTube videos

Adding preview thumbnails and the pop-up feel

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Video Plugins

[�6]

Many plugins and updates have been released to allow users of the most popular
frameworks or libraries to easily display videos from different sources on certain web pages.
Users can also control, manipulate, and change the player's appearance, video reproduction,
and other fundamental parameters.

On the other hand, the new HTML5 specification has introduced support for video by
designing an element (<video>), for playing and manipulating video files in various formats.

However, HTML5 is far from completion and not many browsers support it yet—we'll have
to wait for some time before it's a widely recognized and supported standard.

Plugin overview
Our goal for this chapter is to develop a jQuery plugin capable of potentially upon some
event, embedding, styling (that is, animating, coloring, or whatever), and eventually playing
a YouTube video whose link is specified by the user.

In other words: on being given a text link, our plugin will do the dirty work for us, making
the entire thing better looking than necessary. However, nowadays good looks are a
good investment!

Looking on the Internet for some plugins similar to what we're going to realize could be
useful to better understand the actual goals and aims for this chapter.

With particular interest, a couple of plugins have some of the things we're looking for.
For example, just by creating a link element (<a>) pointing to the YouTube video, the
jYouTubeVideo plugin (written by Muhammad Hamed) makes the following possible:

Download from Wow! eBook <www.wowebook.com>

Chapter 6

[�7]

Also, more keenly on the graphic part, the Floaty plugin, by Tohid Golkar, is responsible
for the video popping up nicely, once the user clicks on the automatically-generated
video thumbnail.

To finally write what are we running after, here is a short list of our main goals so far.

We want our plugin to be able to:

Embed YouTube video files

Display a small thumbnail

Pop out a bigger window (of which we'll choose the dimensions) and play the video

Handling video files
In order to make the plugin work as we expect, and create what we need, we actually have
little to do when speaking of "handling video files". In the true acceptance of the term,
YouTube's own player is already ready and all we need to do is embed it into our web
page using some HTML code.

Despite the almost ready-to-use package we find ourselves dealing with, there's actually
something we should focus our attention on for a little while before we actually start
working on our plugin: that is, YouTube embedded player parameters.

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Video Plugins

[��]

Whenever we link to a YouTube video, the URL can be subdivided into many different parts.
As an example, just take the following address, linking to a random YouTube video, which will
start playing automatically from the one minute mark and will be repeated endlessly:

http://www.youtube.com/watch?v=1IVAR5MCGNY&autoplay=1&start=60&loop=1

In our example:

v=1IVAR5MCGNY

Is the ID of the video we want to watch.

autoplay=1

Tells the player to automatically start the video.

start=60

Is the number of seconds from the start of the video at which the player
begins playing the video.

loop=1

Forces the player to play the video again and again.

And that's it; with some simple additions to the URL we have obtained a slightly modified
player that's closer to our needs. Of course, if we actually needed something more complex
and advanced, we would work our way to some kind of framework, as we did with audio
plugins, resulting in a rather functional plugin that cost us more effort than necessary
(in this case).

A full list of YouTube embedded player parameters is available at this address:
http://code.google.com/apis/youtube/player_parameters.html,
and some examples are provided as well.

Embedding YouTube videos
Provided we already know how to embed a Flash object into a web page, this part won't be
(or at least shouldn't be) difficult at all. The trickiest (but most rewarding) bits come later!

Basically, we need two different embed code blocks as seen in the following code snippet.
One (object) is the W3C standard whereas the other (embed) is deprecated but oftentimes
used for Mozilla files as a safe backup in case something goes wrong.

<object width="425" height="355">
 <param name="movie" value="http://www.youtube.com/
 watch?v=rSgfHjLmmj8"></param>
 <param name="allowScriptAccess" value="always"></param>

Download from Wow! eBook <www.wowebook.com>

Chapter 6

[��]

 <embed src="http://www.youtube.com/watch?v=rSgfHjLmmj8"
 type="application/x-shockwave-flash"
 allowscriptaccess="always"
 width="425" height="355">
</embed>
</object>

Our aim is to obtain some code similar to the above starting from something similar to:

You
tube video

Time for action – creating your first video plugin
Our first attempt to create a video plugin is rather simple. We can always modify its
functionalities at a later time!

1.	 We should already have a new directory set up, called video, and the files we
normally make use of already present in it.

2.	 Our index.html file will just have a link in it (http://www.youtube.com/
watch?v=rSgfHjLmmj8). All of the work is done by our plugin!

<!DOCTYPE html>
<html>
<head>
 <script src="jquery.js"></script>
 <script src="jquery.video.js"></script>
 <script>
 $(document).ready(function() {
 // Plugin call
 $(".video").video();
 });
 </script>
</head>

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Video Plugins

[100]

<body>
 <a class="video" href="http://www.youtube.com/watch?v=rSgfHjLmmj
8">Youtube video
</body>
</html>

3.	 Once the element on which we want to operate is identified, the first thing that our
plugin has to take care of is to retrieve the href attribute (thus the YouTube link)
and create the <object> and <embed> code blocks, which will be inserted right
after the link:

(function($) {
 jQuery.fn.video = function(options) {
 var defaults = {
 width: 425,
 height: 355
 };

 var o = jQuery.extend(defaults, options);

 return this.each(function() {
 var e = $(this);
 var id = e.attr("href").match ("[\?&]v=([^&#]*)")[1];

 $object = $('<object></object>');
 $param = $('<param></param>');
 $embed = $('<embed></embed>');

 $object.attr('width', ''+o.width)
 .attr('height', ''+o.height)
 .appendTo(e);

 $param.attr('name', 'movie')
 .attr('value', 'http://www.youtube.com/v/'+id)
 .appendTo($object)
 .clone()
 .attr('name', 'allowScriptAccess')
 .attr('value', 'always')
 .insertAfter($param);

 $embed.attr('src', 'http://www.youtube.com/v/'+id)
 .attr('type', 'application/x-shockwave-flash')
 .attr('allowscriptaccess', 'always')
 .attr('width', ''+o.width)

Download from Wow! eBook <www.wowebook.com>

Chapter 6

[101]

 .attr('height', ''+o.height)
 .appendTo($object);
 });
 };
})(jQuery)

Regular expressions

Though unknown to many, regular expressions play a huge role in a number of
applications, from checking e-mail to phone and credit card authentication.

In our example, we need a regular expression to simply identify the video ID
from the URL string.

The series of almost incomprehensible symbols "[\?&]v=([^&#]*)",
basically means "take everything after ?v= except for & and the # symbols". We
have now checked whether the URL has a part of itself containing the video ID.

Have a go hero – fix some minor imperfections
Unfortunately, this plugin doesn't quite look as we'd like it to.

There are still things to do and fix, but some minor modifications can be done on the spot,
right now:

The text (Youtube video) shouldn't be visible. Remove it after the video has
been inserted.

The video doesn't play automatically and does not loop either. Add some options
that, following the YouTube player parameters, make the user more aware of
what's happening.

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Video Plugins

[102]

Adding preview thumbnails and the pop-up feel
The idea of having to display some sort of video preview may have puzzled somebody
out there but, luckily enough, we know our way pretty well and are aware YouTube stores
thumbnails online just for this reason!

The web address, common to all videos, which lets us access images on the YouTube servers
is the following:

http://img.youtube.com/vi/<VIDEOID>/<VERSION>.jpg

VIDEOID is, of course, the ID of the video the image has been taken from.

VERSION can have a value of 'default', 0, 1, 2, and 3, where:

'default' retrieves the default small (122x100) thumbnail.

0 is for a bigger (440x360) version of the thumbnail.

1, 2, and 3 are small images taken at different times of the video.

Time for action – adding previews
Having thumbnails added to our link to give the user an idea of what the video is about has
never been easier. Here is how we can retrieve the images from YouTube and display them
on our page.

1.	 Having seen the light, we can now go on modifying our plugin to get closer and
closer to our objective.

We already have retrieved the ID of the video using a regular expression,
and all we need to do is replace the inner HTML code of the link with
our image.

2.	 Our plugin, after the preview and after some parameters have been added, should
look like this:

(function($) {
 jQuery.fn.video = function(options) {
 var defaults = {
 width: 425,
 height: 355,
 autoplay: 1,
 loop: 0,
 thumb: 'default'
 };

Download from Wow! eBook <www.wowebook.com>

Chapter 6

[103]

 var o = jQuery.extend(defaults, options);

 return this.each(function() {
 var e = $(this);
 var id = e.attr("href").match("[\?&]v=([^&#]*)")[1];

 e.html('<img src="http://img.youtube.com/vi/'+id+'/'+
 o.thumb+'.jpg" class="thumbnail" alt="Youtube video"" />');
 });
 };
})(jQuery)

3.	 It's important to note that, by changing the default value for the thumbnail option,
other pictures can actually be displayed at the user's will.

Time for action – creating a pop up
The pop up is similar to the one we used for the gallery plugin, except for the fact that we're
going to make it a little better this time by paying more attention to details.

1.	 Remember the jquery.center.js plugin from Chapter 4? Well, we need it
now. So find it and copy it over to the video directory. Also, include the script
in the index page.

2.	 We first have to understand how the pop up is intended to work. Whenever it's
activated, the pop-up script should turn the document color into black (well,
transparent black, for that nice effect we're all used to) and display a new
element right above everything else.

We need two new HTML elements and some CSS code (to insert into
jquery.video.css and include together with the plugin) for this
to happen.

The HTML code to add at the beginning of the body tag is as follows:

<div id="overlay"></div>
<div id="popup">
 <div id="video"></div>
 Close
</div>

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Video Plugins

[104]

Note that we need the preceding code only once regardless
of how many video links are present on our page. However,
it can also be generated by the plugin automatically to
make it really self-sufficient.

The CSS code is as follows:

.thumbnail {
 border: 0;
}

#overlay {
 display: none;
 background-color: #222;
 opacity: .75;
 filter: alpha(opacity=75);
 position: fixed;
 left: 0;
 top: 0;
 width: 100%;
 height: 100%;
 z-index: 1000;
}

#popup {
 display: none;
 text-align: left;
 position: absolute;
 padding: 10px;
 border-radius: 5px;
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
 border: 2px solid #333;
 background-color: #fff;
 z-index: 2000;
}

Please note that the CSS code for plugins is better stored
in separate files (that is, jquery.video.css) and
provided as part of the plugin package for easy inclusion in
a page.

Download from Wow! eBook <www.wowebook.com>

Chapter 6

[105]

3.	 And now, our plugin will be responsible for registering events and make the whole
thing work upon a mouse click, as follows:

(function ($) {
 jQuery.fn.video = function (options) {
 var defaults = {
 width: 425,
 height: 355,
 autoplay: 1,
 loop: 0,
 thumb: 'default'
 };

 var o = jQuery.extend(defaults, options);

 return this.each(function() {
 var e = $(this);
 var id = e.attr("href").match("[\?&]v=([^&#]*)")[1];

 e.html('<img src="http://img.youtube.com/vi/'+id+'/'+
 o.thumb+'.jpg" class="thumbnail" alt="Youtube video" />')
 .click(function(evt) {
 evt.preventDefault();

 $object = $('<object></object>');
 $param = $('<param></param>');
 $embed = $('<embed></embed>');

 $object.attr('width', ''+o.width)
 .attr('height', ''+o.height)
 .prependTo($("#popup #video"));

 $param.attr('name', 'movie')
 .attr('value', 'http://www.youtube.com/v/'
 +id+'?autoplay='+o.autoplay+'&loop='+o.loop)
 .appendTo($object)
 .clone()
 .attr('name', 'allowScriptAccess')
 .attr('value', 'always')
 .insertAfter($param);

 $embed.attr('src', 'http://www.youtube.com/v/'
 +id+'?autoplay='+o.autoplay+'&loop='+o.loop)
 .attr('type', 'application/x-shockwave-flash')
 .attr('allowscriptaccess', 'always')

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Video Plugins

[106]

 .attr('width', ''+o.width)
 .attr('height', ''+o.height)
 .appendTo($object);
 $("#popup #close").click(function() {
 $("#popup").fadeOut("slow").remove();
 $('#overlay').fadeOut("slow");
 });

 $("#popup").center().fadeIn("slow");
 $('#overlay').fadeIn("slow");
 });
 });
 };
})(jQuery)

4.	 Clicking on an image will now result in a pop up being displayed with fading effects!

Download from Wow! eBook <www.wowebook.com>

Chapter 6

[107]

What just happened?
In the previous two Time for action sections, we have achieved quite a large amount of work.
However, let's see exactly how we managed to get to this point.

The part dealing with previews shouldn't be much of a problem. The only tricky part could
have been retrieving the images from YouTube servers or, even earlier than that, parsing the
URL with a regular expression to eventually obtain the video ID.

On the contrary, what might arouse some doubts and interest is the pop-up behavior.

We have used two divisions (<div>) for our purpose. The overlay is the one that, once the
preview is clicked, occupies the whole window height and, put on top of other items using
the z-index CSS property, paints the page transparent black. The other DIV, the pop up
itself, is displayed above the overlay (thus, its z-index value must be greater than the value
set for the #overlay DIV) and is the container of the video, which will be inserted into the
#video DIV, replacing the existing HTML code.

The pop up can be styled in any way we want: it's just CSS after all!

Also, the close link does nothing more than fading out both the overlay and the pop up, and
deleting the pop up, with the effect of stopping the video and making everything go back
to normal.

The fade effect can also be replaced with some other, more advanced effect, for which lots
of plugins are available on the Internet.

With some more tweaks, a cooler effect can be obtained. For example, when the user hovers
the mouse pointer over a video thumbnail, image previews (being the three images taken by
YouTube from different moments in the video) pass by to give a better idea of what the video
is about.

Pop quiz
1. There are two ways to embed Flash content into a web page: using the <embed> tag

or the <object> tag.

We have used both, one inside the other. Why is using both recommended?

A. For compatibility issues. <embed> works for Internet Explorer whereas
<object> is for other browsers.

B. To make sure at least one works.

C. They are equivalent, except for the fact that <embed> is deprecated now and is
mostly used to satisfy Mozilla browsers as a backup solution.

D. They are equivalent, except for the fact that <object> is deprecated now and
is mostly used to satisfy Mozilla browsers as a backup solution.

Download from Wow! eBook <www.wowebook.com>

Media Plugins: Video Plugins

[10�]

2. Referring to our example, how can the video code be added to the pop up using
jQuery methods?

A. Using either after() or any other equivalent.

B. Using the text() method.

C. Using the html() method.

D. None of the above.

3. What has the #overlay DIV been used for in our plugin?

A. Its goal was to obscure the visible page and prevent mouse interactions with
other elements on the page.

B. It represents the pop up itself, on which the video is displayed and played.

C. As a simple container, it has no actual practical use.

D. None of the above.

Summary
Apart from the successful realization of our video plugin, we have noticed how little
jQuery (but JavaScript in general, for that matter) can do to handle media content
(that is, particularly videos and sounds) in a simple and inexpensive way.

One of the reasons why we have little to no control over certain elements or objects at a
relatively high level is the particular nature of the items themselves.

If, speaking of images, for example, we can manipulate many of their properties from HTML
code (then accessible from JavaScript functions, too), the same doesn't necessarily apply for
more complex media types that even require third-party plugins to work properly.

Despite the difficulties one may encounter when dealing with topics like this, we should
never forget the main goal our plugin(s) have. If our intent was to pop up a video and display
a preview, so be it. We won't be trapped in those additional plugins, players, and frameworks
definitely not worth the effort, as the majority of video interaction we might ever need is, in
fact, being able to easily and effortlessly implement a video clip from YouTube.

If, on the other hand, we aim a little higher and are willing to face the challenge of developing
a more advanced jQuery plugin (with a Flash plugin and JavaScript—or jQuery—framework
included too), many paths can be followed, each of which will greatly help in significantly
increasing our knowledge.

Download from Wow! eBook <www.wowebook.com>

Chapter 6

[10�]

However, a mid-way approach is round the corner. The new HTML5 specifications aim at
creating some "guidelines" for media content so that it should look, feel, and sound the
same for everyone and should be simpler to deal with.

Also, many methods for controlling media content should be already made available for
JavaScript, and we had a look at them in the chapter dealing with sound plugins.

As for the next chapter dealing with forms plugins, a somewhat different approach will be
used. As it's quite a heavy topic, some of the most popular and commonly-used plugin types
will be analyzed (including form validation and submission) and some full-length code will be
written and taken care of.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

7
Form Plugins

Every website we visit on a daily basis has some kind of form for sure. It can
be a form to submit comments, contact the author or owner, or just "sign" an
online guestbook.

Forms make interactions between people possible. In plain words, once you've
written your comment, idea, or suggestion, all you have to do is click on the
"Send" button and something will happen (for example, the owner will be
notified, a comment will be posted, or an e-mail will be sent, and so on).

However, as everyone can access online forms (yes, spammers and psychos
too!), we might want to think of some way to protect our website from
unwanted comments and our e-mail from weird messages. Some common
examples are: by using Captcha, form (or e-mail, or both) validation techniques,
and so on.

Also, for those who genuinely wish to contact us or state their point of view
about an article we've written, we might want to provide some sort of
improvements (for example, spell check, help labels, and so on). They may
admire our beautiful form, created using jQuery enhancements, and may
even ask us about it.

Specifically, the topics we're going to deal with in the following pages concern:

Form plugins in general

Validating forms

Auto-growing textareas

Other types of form-related plugins

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[112]

As you can see, there actually are many different ways of dealing with forms, from different
points of view such as security, accessibility, and general look and feel.

In this chapter we are going to see how some of the most popular form-related plugins can
be realized and implemented on our web page or application with particular focus on the
versatility and scalability aspects.

Form plugins in general
As strange as it may sound, form plugins are those jQuery plugins that, in one way or in
another, are related to forms, be it for spicing up forms a little (changing colors, adding
pictures, or whatever) or for validation purposed styling and/or usability improvements.

After all, forms are a practical and functional way of submitting any kind of information in
different ways, but often lack security and give spammers and really annoying people the
n-th chance to eventually spam and annoy more.

As for many other jQuery plugin categories, a lot of people have given their contribution in
terms of code, functions, and plugins. Many interesting solutions have been proposed to
solve some of the most common and widespread problems that arise when developers or
users need to use forms.

Download from Wow! eBook <www.wowebook.com>

Chapter 7

[113]

For one, there's the always present problem of validation. Be it due to misunderstanding,
distraction, or even on purpose, people are likely to submit forms containing missing or
wrong information. Often, these errors are even incompatible with the type of information
that was supposed to be entered, thus causing, once again, problems on the server side or to
other people.

In conclusion, the main goal that all form-related plugins share is improving, and sometimes
also simplifying user experience and interaction with this kind of element. In the end, no
matter what the plugin really accomplishes, as long as it might be useful to somebody, it
should provide an original and effective solution to this trouble.

Validating forms
Let's face it: the so-called "form validation" thing is one of those features we somehow both
hate and love at the same time!

After having clicked on the Submit button, if a validation plugin kindly informs us that our
application form contains errors or misspellings, we truly feel a blind rage running up our
spine. However, we actually fall in love with that very same plugin when we know for sure
that it is validating some little kid, spammer, or a diversely funny person who is trying to fill
our own website's comments page with pointless posts and uninteresting (and unwanted!)
text ads.

A form validation example, as seen on bassistance's form validation plugin, is as follows:

In fact, the latter's poorly thought-out attempt at putting people off can be oftentimes avoided
by placing a Captcha at the bottom of the form or, sometimes, even a simple check against the
e-mail address or some other detail can help keep undesired attention off our web space.

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[114]

To tell the truth, controls over e-mail addresses and other text fields are actually more
focused on helping out the user to fill in the form without errors of any kind—even though
sometimes this kind thought might look troublesome, especially when we are in a hurry.

A less annoying attempt at making things work smoothly can be by implementing an inline
error notification. Users will eventually be satisfied, and forms will be filled with no errors.
Using this type of notification—instead of loading another page to display the error or even
clear all of the fields forcing the user to re-fill the same textboxes for the n-th time—errors
are displayed right next to the textbox, with no need of redirecting everything to another
page in a very non-jQuery-like fashion.

Our aim at this point would normally be to develop a plugin that provides a set of methods
to automatically check textboxes' content once the Submit button is clicked. However, keep
in mind that a validation plugin is already included in jQuery and writing the following line of
code is enough to have the form checked once the Submit button is clicked on:

$("#form-selector".validate();

Time for action – creating the form check plugin
Let's create our own basic form validation plugin.

1.	 Create a new directory, call it formcheck, and copy over or create on the spot the
files we will need.

2.	 Our HTML file only contains a form and the call to our plugin:

<!DOCTYPE html>
<html>
<head>
 <script src="jquery.js"></script>
 <script src="jquery.formcheck.js"></script>
 <script>
 $(document).ready(function() {
 $(".formToCheck").formCheck();

Download from Wow! eBook <www.wowebook.com>

Chapter 7

[115]

 });
 </script>
 <style>
 form { width: 300px; }
 label { position: absolute; }
 input:not(.submit), textarea { margin-left: 100px;
 width: 200px; }
 .submit { margin-left: 100px }
 </style>
</head>
<body>
<form class="formToCheck" id="formToCheck" method="get"
 action="#">
<fieldset>
 <legend>A simple form</legend>
 <p>
 <label for="fname">* First name</label>
 <input id="fname" name="fname" class="required" />
 </p>
 <p>
 <label for="lname"> Last name</label>
 <input id="lname" name="lname" />
 </p>
 <p>
 <label for="email">* Email</label>
 <input id="email" name="email" class="required email" />
 </p>
 <p>
 <label for="comment">* Comment</label>
 <textarea id="comment" name="comment" class="required">
 </textarea>
 </p>
 <p>
 <input class="submit" type="submit" value="Submit"/>
 </p>
 </fieldset>
 </form>
</body>
</html>

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[116]

The form is displayed as follows:

3.	 And now, our plugin code.

The first things we must take care of are (A) to check whether the element we
are working on is actually a form or not, and (B) to make sure we will handle
everything when, and only when, the submit button has been pressed:

var form = $(this);

// (A)
if(!form.is("form")) return;

form.submit(function() {
 // (B) code goes in here
});

4.	 Now, we have to figure out a way to display errors, if any, and check if there are
errors, meaning the purpose of the field has not been respected.

To set things out, errors will be displayed in red right next to the field, and
the textbox borders will also turn red for the occasion.

The type of information we expect the user to write into each field will
be indicated by the element's class and may be any combination of
the following:

required: This points out that the field must be filled in order for
the form to be valid.

email: This field contains an e-mail address and the content must,
at least, look like a valid e-mail address.

min# (# being a positive integer): This is the minimum length of the
contained string.

numbers: This is for fields that are designed to contain numbers
only (no spaces either).

Download from Wow! eBook <www.wowebook.com>

Chapter 7

[117]

5.	 The first problem we face is how to select each input belonging to the form we're
working on:

$(":input", this).each(function(index, element) {
 // code to execute for each element
 var e = $(element);
});

6.	 The required check is actually really straightforward: if a field is "required" it must
not be empty, and thus have a number of characters lower than one.

Also, if there is an error (that is no content entered) we'll add an "error"
class to the element, so we can apply some CSS style to it at a later time.

if (e.hasClass("required") && e.val().length == 0) {
 // error
 e.addClass(o.errorClass);
}

7.	 The same principle applies to numeric fields, except that we will want to check
whether the field is empty or not, as the regular expression will fail even if there
is nothing in it.

The other thing that might cause some trouble is: how can we check if the
user has inserted numbers only?

Using regular expressions, this looks like a very simple joke:

if(e.hasClass("numbers") && !/^\d+$/.test(e.val()) && e.val().
length > 0) {
 e.addClass(o.errorClass);
}

8.	 E-mail address checking is mostly the same, except for the regular expression string,
which is quite a bit longer.

Also note that the official standard for valid e-mail addresses (known as
RFC2822) is available at http://tools.ietf.org/html/rfc2822
(Section 3.4.1) and is all but useless since it weighs too much and is way too
complicated for everyday usage.

Regular expressions to validate e-mail addresses can be found anywhere
on the Internet and can be substituted for this expression in case they
work better:

if(e.hasClass("email") && !/^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-
zA-Z]{2,4}$/.test(e.val()) && e.val().length > 0) {
 e.addClass(o.errorClass);
}

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[11�]

9.	 Now, on to the tricky bit, which is checking if a certain class exists and finding a
number right next to the class name.

We first check for the element to have the right class name format
(string—that is, "min"—immediately followed by a number) and then we
select the first element of the array so obtained for a comparison against
the actual length of the text contained in the box:

var p = this.className.match(/min(\d+)/i);

if(p && e.val().length < p[1]) {
 e.addClass(o.errorClass);
}

10.	As a last touch, we have to prevent the form from being submitted, or users won't
be given a chance to correct whatever was wrong.

The jQuery submit() method submits the form when a flag variable is
returned with a true value. On the contrary, if the variable value is false,
the form won't be submitted at all and the user will be able to make the
necessary changes and submit the form again.

So, adding a simple flag (errorFlag) that's increased anytime an error is
detected and returned at the very end of the submit() function is enough
to avoid undesired form submission.

11.	As for CSS styling, we have little to add, but for plugins of bigger dimensions that
make heavy use of custom classes, a separate stylesheet is usually required.

To make it work, though, we can just add this line to the HTML page inline
styling and see the field borders turn red on error.

.error { border: 1px solid red }

Download from Wow! eBook <www.wowebook.com>

Chapter 7

[11�]

Once everything has been put together, eventually the code will look
like this:

(function($) {
 $.fn.formCheck = function(options) {
 var defaults = {
 errorClass: "error"
 };

 var o = jQuery.extend(defaults, options);

 return this.each(function() {
 var form = $(this);

 if(!form.is ("form")) return;

 form.submit(function() {
 var errorFlag = false;

 $(":input", this).each(function(index, element) {
 e = $(element);

 e.removeClass(o.errorClass);

 if(e.hasClass("required") && e.val() == '') {
 errorFlag = true;
 e.addClass(o.errorClass);
 }

 if(e.hasClass("email") && !/^[a-zA-Z0-9._-]+
 @[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$/.test(e.val()) &&
 e.val().length > 0) {
 errorFlag = true;
 e.addClass(o.errorClass);
 }

 if(e.hasClass("numbers") && !/^\d+$/.test(e.val()) &&
 e.val ().length > 0) {
 errorFlag = true;
 e.addClass (o.errorClass);
 }

 var p = this.className.match(/min(\d+)/i);
 if (p && e.val ().length < p[1]) {
 errorFlag = true;
 e.addClass (o.errorClass);
 }

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[120]

 });

 return !errorFlag;
 });
 });
 };
})(jQuery)

Have a go hero – improve the user experience
Changing the border color is certainly a way to attract some attention to the wrongly filled
textbox, but the user is left clueless about what the error is and how to correct it.

For every error, we should provide an explanation of why something went wrong and display
the text right next to the erroneous field in the form.

Also note that the text should be easily modifiable by the user, who must be able to change
any error description when initiating the plugin.

Does this plugin work with textareas as well?

Make the necessary adjustments to add support for textarea elements in the same way we
made input elements work.

Auto-growing textareas
When dealing with forms, users are (usually) supposed to enter information and fill all
(or part) of the fields. For this reason, we actually have to take care of textboxes, which
are the most versatile way of submitting information.

One of the simplest, yet most appreciated and useful, plugins we can develop to make sure
the user gets a pleasant and original experience is about textareas. A common issue when
writing text is not being able to see everything, or being limited to a certain size when
speaking of textarea dimensions.

Download from Wow! eBook <www.wowebook.com>

Chapter 7

[121]

To get over this problem (which is nothing but a practical add-on that makes the user
experience far more enjoyable), we are going to find a way to actually increase the height
of the textarea we're writing in when necessary—that is, whenever a new line is added.

Time for action – creating the autogrow plugin
What we are aiming for is to find a way to make a textarea grow in size either indefinitely or
between specific limits, as we might not want to obtain indefinitely long pages.

1.	 Our usual directory and files layout needs to be set up. The autogrow directory will
contain the jquery.js file and the plugin file as well (jquery.autogrow.js).

2.	 Our HTML file looks very simple, as we just need a textarea element to let the
magic happen.

<!DOCTYPE html>
<html>
<head>
 <script src="jquery.js"></script>
 <script src="jquery.autogrow.js"></script>
 <script>
 $(document).ready(function() {
 $(".autogrow").autoGrow();
 });
 </script>
</head>
<body>
<form action="#" method="post">
 <fieldset>
 <legend>Autogrowing textarea</legend>

 <textarea class="autogrow">This textarea will grow
indefinitely.</textarea>
 </fieldset>
</form>
</body>
</html>

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[122]

3.	 Finally, we go on to our plugin file.

Our plugin will provide only two options at this stage, which are minHeight
(defaults to 0) and maxHeight (defaults to any high number close enough
to infinity), respectively representing the minimum and maximum height
that the textarea can assume after a size change due to new or deleted text.

4.	 Although the general overall structure is pretty much the same as for our other
plugins, we will now have a closer look at what the code does and looks like.

The basic code block for this plugin is the following:

var e = $(this);
var pValLength, pWidth, valLength, width, h;

if(!e.is("textarea")) return;

e.css("overflow", "hidden").keyup(function() {
 // more code
});

5.	 The above code is pretty simple but helps to understand the fundamental routes
to get to the end of the development of this plugin.

Apart from a couple of variables we'll need later, we're checking whether
the element we're applying the plugin on is actually a textarea or not, or we
won't be able to do anything with it.

Also, we have hidden any overflow by default, as we will end up with a long
scroll-less textarea.

6.	 This part is rather JavaScript-heavy, which means some knowledge about JavaScript
functions wouldn't hurt at all, since the plugin is based on some element properties
that are accessed through jQuery methods but eventually refer to DOM properties:

valLength = $(this).val().length;
width = $(this).attr("offsetWidth");

if(valLength < pValLength || width != pWidth) {

Download from Wow! eBook <www.wowebook.com>

Chapter 7

[123]

 $(this).height(0);
}

h = Math.max(o.minHeight, Math.min($(this).attr("scrollHeight"),
o.maxHeight));

$(this).css("overflow", ($(this).attr("scrollHeight") > h ? "auto"
: "hidden")).height(h);

pValLength = valLength;
pWidth = width;

7.	 And that's it!

Once we have taken care of changing the size of the textarea depending on
the need (also checking against the previous dimensions), we only have to
update the current height needed and switch around the variables to get
ready for the very next character typed in.

The following is the resulting code and the resulting sample screenshot:

(function($) {
 $.fn.autoGrow = function(options) {
 var defaults = {
 minHeight: 0,
 maxHeight: 9999
 };

 var o = jQuery.extend(defaults, options);

 return this.each(function() {
 var e = $(this);
 var pValLength, pWidth, valLength, width, h;

 if(!e.is("textarea")) return;

 e.css("overflow", "hidden").keyup(function() {
 valLength = $(this).val().length;
 width = $(this).attr("offsetWidth");

 if(valLength < pValLength || width != pWidth) {
 $(this).height (0);
 }

 h = Math.max(o.minHeight, Math.min($(this).attr
 ("scrollHeight"), o.maxHeight));

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[124]

 $(this).css("overflow", ($(this).attr("scrollHeight") >
 h ? "auto" : "hidden")).height(h);

 pValLength = valLength;
 pWidth = width;
 });
 });
 };
})(jQuery)

What just happened?
The final product might have amused you and, at the same time, made you wonder how this
was all possible.

But let's have a closer look at the code and understand what has been going on to begin
with. After all, nothing here is really complicated, just a little different to what we were used
to until now.

The whole point in this plugin is to play a bit with element properties in order to adjust the
textarea dimensions according to our needs (that is, more text being written in).

In the very first part everything should look clear. We first check whether the element we
have called the plugin on is actually a textarea element (or the whole thing wouldn't make
sense at all). The next step is to disable scrollbars. Now that the textarea increases in size as
more content is added, who needs them after all?

We thus bind the keyup event to a simple routine by means of which we can change the
textarea size with ease.

And we've finally got to the trickiest part. Here, our aim is to check if the height of the
textarea needs to be increased due to a different scrollHeight value (that is, the "height"
of the object's content).

Download from Wow! eBook <www.wowebook.com>

Chapter 7

[125]

Note that this number doesn't always change.

For example, if we start writing a lot of words into the textarea and reach a scrollHeight
of, say, 200 pixels but we suddenly realize something is wrong in the text and we go on and
delete half of it, the most logical guess is to suppose the scrollHeight value would be cut
down to 100.

Unfortunately, we're wrong and a value of 200 is still considered as the value of
scrollHeight. Needless to say, this behavior compromises our plugin if we don't take care
of it and actually reset the height (setting it to 0) if the number of characters present after
the keyup event fires is lower than the number of characters we had previously.

Have a go hero – improved autogrow
If you thought that the plugin can be considered finished, you haven't a grasp of jQuery's
options yet!

A very interesting thing to do in order to obtain some more features and options, which just
about any person would love to see in this type of plugin, is to apply some sort of effect to
it. I don't mean adding purple lighting or a ringing bell, but a very simple fading or scrolling
effect would be effective.

Also, if you're looking at the jQuery documentation, you can also figure out how to check
the number of characters, words, or paragraphs written into the textarea. This can be used
to compute and create a simple validation function of your own to make sure that a user
doesn't enter more (or less) than a certain number of characters, words, or paragraphs
into a single textarea.

Other types of form-related plugins
Of course, there are other kinds of form plugins, as jQuery (and JavaScript) can manipulate
nearly everything a web page has to offer. Lots of plugins (operating, in fact, on every aspect
of the HTML code and providing visual aid, too) have been released.

Checkboxes and radio buttons
Checkboxes and radio buttons both play an important role in forms, in any situation involving
multiple choice questions (just think the usual "gender" option, for which you have to select
either "male" or "female"—or "undefined"). These elements are required to avoid a number
of ambiguous answers. What would happen if, when asked to answer "are you male or
female?" some funny guy replies with "whatever" or "ask your mum", having being given
the possibility to actually enter information into some kind of textbox?

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[126]

The problem arises when the desire to style, and/or add some kind of control over, the
checkbox or radio values first comes to our mind. For example, wouldn't it be cool to
change the look and feel of checkboxes and radio buttons? Well, by using some jQuery code
together with a bunch of CSS instructions this is possible. Results similar to the following,
obtained by using Window Maker, can be easily obtained:

However, you may be wondering: "How can this be accomplished?".

Firstly, through some CSS code, we must hide the original checkbox, and replace it with our
own image or whatever.

We should also assign to our newly created "checkbox-replacement" element an ID from
which we can easily get the original checkbox's ID.

For example, we may want to replace all the checkboxes with images whose IDs will be those
of the checkboxes plus the string -replacement.

<input type="checkbox" id="mycheckbox1" />
<input type="checkbox" id="mycheckbox2" />

<!-- Our images would then be something like this -->

Download from Wow! eBook <www.wowebook.com>

Chapter 7

[127]

Whenever the user clicks on an image (that is, checkbox), something should happen to let
him or her understand that he or she has actually (un)checked a checkbox. We then need to
check, or uncheck through JavaScript, the corresponding hidden checkbox and change the
image displayed according to the checkbox state:

$(".image-checkbox").click(function() {
 var $cb = $('#original-checkbox-id);
 var isChecked = $cb.is(":checked");

 // Toggle state
 $cb.attr("checked", !isChecked);

 // Change image
 if(isChecked) {
 $(this).attr("src", uncheckedImage);
 }
 else {
 $(this).attr("src", checkedImage);
 }
});

Text manipulation
Another very common problem is dealing with text and words of different origin. Sometimes
we would like users to enter all lowercase or uppercase text due to software requirements or
personal liking.

Mustafa Özcan has released a plugin for transforming all input into uppercase.

A similar result can be obtained in the old-fashioned way by creating two arrays, one
containing lowercase characters and the other only uppercase ones.

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[12�]

Obviously, the trouble here is to catch the key the user has actually pressed by using the
keypress() event to check what has been hit (either the keycode or ASCII character
or both):

$("#myinput").keypress(function(event) {
 var keycode = event.keyCode;
 var ascii = event.which;
});

Our next problem is to locate the character and replace it:

var i = $.inArray(ascii, lowercase_array)

// found in array: it's a lowercase character
if (i > -1) {
 // remove last character
 var newText = input.val().slice(0, -1);
 // add uppercase character
 input.text(newText+uppercase_array[i]);
}

Obviously, this rough approach can be made prettier and, more importantly, an option to be
able to do the opposite (that is, transforming uppercase to lowercase) would be really neat
and appropriate.

Edit in place
Believe it or not, creating an edit-in-place plugin with jQuery is simpler than it may seem.

But first, what exactly is this edit-in-place thing?

Just imagine that you click on any text on the page and a textbox pops up to allow you to edit
the content. Also, once you have modified it and click on Submit, the updated information is
displayed in the page and copied over to some database.

This is how edit-in-place plugins work:

Download from Wow! eBook <www.wowebook.com>

Chapter 7

[12�]

We begin by replacing the text block with an input field, which will contain the original text
and save it on blur:

$(".editable").click(function() {
 var e = $(this);
 var $input = $('<input type="text" />').attr("value",
 e.html()).blur(function() {
 e.html($(this).attr("value")).show();
 $(this).remove();
 });

 e.hide().parent().prepend($input);
});

In fact, creating new elements with jQuery is as simple as writing the HTML into $(), as we
would to select any element. This creates a new jQuery object that we can treat like any
other, thus being allowed to attach events and methods to it.

The previous code snippet modifies the text (that is, hides the input and displays the text
element) when the input loses focus.

Another approach to this problem is to create a form instead and change the text once the
submit button is clicked on, thus leading to a more controlled and logical behavior.

Also, updated content is not saved anywhere in the above example, making it rather useless
in the real world. Who would want to change some text knowing nothing actually changes
on the server side?

For this reason, we may want to introduce a PHP script to redirect our form action to. The
PHP page will then update the database or files whereas the jQuery plugin will have to fetch
the content once more through an AJAX call or just copy the form content—the database will
be accessed once less but will eventually step in on page refresh.

Have a go hero – add more options
We had a somewhat detailed look at the various types of plugins dealing with forms, and we
also should have clear in mind what the difficulties are when dealing with this kind of plugin.

Based on the above instructions and code snippets, choose one plugin type we have learned
of and develop a working example of it. Use the jQuery website, books, and ultimately the
Internet as reference.

A very important thing to bear in mind, though, is to always look for the easiest way to do
things (at least at first). Eventually, improve things by adding features, new options, and sick
tweaks to get a really nice-looking and smooth plugin.

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[130]

Pop quiz
1. Our attempt at creating a jQuery plugin for validating forms was mainly based on an

already existing jQuery plugin called Validation, which does not provide a sufficient
level of accuracy when it checks submitted forms. Is that correct?

A. Yes, absolutely.

B. Yes, even though the Validation plugin is also included by default into the latest
jQuery release.

C. No, the effectiveness and quality of the Validation plugin has been proved by
its inclusion in the jQuery releases. Our attempt is just for educational purposes
to demonstrate how such results can be accomplished using jQuery methods
and syntax.

D. Not sure.

2. In the implementation of our own validation plugin, we have made use of regular
expressions to check the format of a particular string that has been entered into
the selected text box.

How does the test() function behave? What are the return values of the
function we need to look for in order to understand that we actually have
a match?

A. test() is a method that takes two arguments: the regular expression and the
string in which it looks for the regular expression.

B. test() is a jQuery method that requires one argument, that is, the string to be
searched and returns true if a match is found or false otherwise.

C. test() is a JavaScript method that requires one argument; that is, the string
to be searched and returns false if a match is found or true otherwise.

D. test() is a method requiring the string to be looked for as its only argument.

3. In order to show errors to the users, our form validation plugin has to prevent the
form from being submitted if any error is found.

In addition to the error flag, which is certainly useful in this case, we also
have to do some other things for the submission cancellation to occur.

A. Submission can be avoided by either calling .preventDefault() on the event
object or returning false.

B. Submission can be avoided by either calling .preventDefault() on the event
object or returning true.

Download from Wow! eBook <www.wowebook.com>

Chapter 7

[131]

C. Nothing. The error flag is enough, if set to false, to tell jQuery not to submit the
form when the submit() event occurs.

D. Nothing. The error flag is enough, if set to true, to tell jQuery not to submit the
form when the submit() event occurs.

4. Consider the following code, which we used in our form validation plugin. What is
the content of the variable p most likely to be?

var str = "first-class min6 test";
var p = str.match (/min(\d+)/i);

A. p[0] => "min6"
p[1] => "min"

B. p[0] => "first-class min6 test"
p[1] => "min6 test"
p[2] => "min6"

C. p[0] => "first-class min6 test"
p[1] => "min6"
p[2] => "6"

D. p[0] => "min6"
p[1] => "6"

5. In the writing of our autogrow jQuery plugin we have used the scrollHeight
property (and scrollWidth too) more than once.

What does the property refer to?

A. It's the height (or width) the scrollbar would be if we had not hidden them.

B. It's the distance between the top and bottom (or left and right) edges of the
object's content in pixels (px).

C. It's the same as height().

D. It's the distance between the top and bottom (or left and right) edges of the
object's content in points (pt).

6. Our autogrow plugin makes use of the keyup event. Why is this event preferred
over the keypress event, which would result in a more logical conclusion, if we
think the user might hold down the key and the textarea would then increase in
size only once the key is released?

A. Because the keypress event occurs before the character is actually displayed
in the textbox, resulting in scrollHeight not being accurate at that point.

B. Because the keypress event is significantly slower than the keyup event and
the text would flicker and/or the resulting size would be inaccurate.

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[132]

C. There is no reason, actually. It's a matter of personal taste, even though
keypress is not supported by some older browsers and may be incompatible
with slower computers.

D. None of the above.

7. Is there any difference between scrollHeight and innerHeight()?

And if so, what would be the most accurate value to use in a jQuery plugin
similar to ours?

A. innerHeight() is a JavaScript method that returns the height of the element,
including top and bottom padding, in pixels.

We do care about padding in this case, so innerHeight() is our
best choice.

B. innerHeight() is a jQuery method that returns the height of the element, top
and bottom padding excluded, in pixels.

We don't care about padding in this case, so innerHeight() is our
best choice.

C. innerHeight() is a JavaScript method that returns the height of the element,
top and bottom padding excluded, in pixels.

We don't care about padding in this case, so scrollHeight is our
best choice.

D. innerHeight() is a jQuery method that returns the height of the element,
including top and bottom padding, in pixels.

We don't care about padding in this case, so scrollHeight is our
best choice.

8. We have also used the data() method to store information into elements.

How does this method actually work and what are some of its
(dis)advantages (if any)?

A. It stores arbitrary data associated with the matched elements.

Unfortunately, the method is not compatible with most modern
browsers, though.

B. It stores arbitrary data associated with the matched elements.

Functions (and references to functions) cannot be stored using a .data() call.

C. It stores arbitrary data associated with the matched elements.

Functions (and references to functions) can also be stored using a .data() call.

D. It stores text-like data associated with the matched elements.

Download from Wow! eBook <www.wowebook.com>

Chapter 7

[133]

9. In order to develop a working edit-in-place plugin, what must we absolutely take
care of if we intend to submit the modified information to a database?

A. Security—information should be transmitted in a safe way.
Speed—modified content should move rapidly from the client side to the
server side.
Interface—form styling and look and feel are fundamental.

B. Security—information shall be transmitted in a safe way.
Server-side scripting—a PHP (or equivalent) script should be used as form
target so information is processed and submitted to the database for a change.
Client-side validation—to prevent wrong content from being submitted and
possible errors from being saved.

C. Client-side validation—to prevent wrong content from being submitted and
possible errors from being saved.

Security—information should be transmitted in a safe way.
Interface—form styling and look and feel are fundamental.

D. Valid HTML code—to avoid any kind of misunderstanding as jQuery selectors
are concerned.
Server-side scripting—a PHP (or equivalent) script should be used as form
target so information is processed and submitted to the database for a change.
Security—information should be transmitted in a safe way.

10. Are keycodes recognized by JavaScript?

And if yes, how can the developer access and make use of them, and in
which form?

A. They cannot be accessed using JavaScript only, and other frameworks and/or
programming languages should be used to obtain better results.

B. Keycodes can be accessed through the keycode or which properties of any
event regarding keys being pressed.

C. Keycodes can be accessed through the keycode or which properties of
any event.

D. Keycodes can be accessed only through the keycode property of any event
regarding keys being pressed.

Download from Wow! eBook <www.wowebook.com>

Form Plugins

[134]

Summary
In this chapter, we have seen how form plugins of different kinds can be realized and,
in particular, we have had an in-depth look at how form validation plugins and textarea
autogrow plugins can be developed.

Also, some other interesting ways of interacting with forms have been presented in the form
of code snippets and examples given for some of the most common and widespread types of
plugins the average user usually deals with on a daily basis.

Ranging from checkboxes and radio button improvements to an interesting realization of a
simple edit-in-place plugin allowing in-place editing of a text paragraph, we have also seen
and learned how many other useful jQuery plugins, such as the case changer one, actually
work and find application in the real world.

With particular interest, we also had a chance to see many new methods and functions at
work in these plugins, allowing for a more detailed and expert understanding of how jQuery
works when speaking of plugins.

As a side note, the increasing importance and multiple roles the element $(this) plays
in plugin development when we're selecting elements should be noticed, as its role and
meaning in the jQuery syntax and coding standards is worth a second look.

Unfortunately, due to space issues, as always, we haven't been able to cover everything form
related, even though we did our best to get our hands on a little of everything. With much
regret, we left out some very interesting plugin ideas, which are anyway available on the
Internet and the jQuery plugin directory for those of you particularly keen on the topic.

For example, honorable mentions go to date picker plugins, advanced validation or file
uploads, and AJAX form submission. The majority of these topics, though, are quite
complicated to deal with and would be far beyond the scope of this chapter and book.

Speaking about chapters, though, we're quickly approaching a User Interface chapter (that
is, the next chapter), which will provide a first overview of what User Interface plugins are
like, in terms of objectives, requirements, and user interactions required to get the best out
of them.

Immediately following, a couple of chapters will cover tooltip plugins and menu and
navigation plugins, each guiding you through the creation of a quality plugin, which can
be then easily expanded and modified at a later time.

Download from Wow! eBook <www.wowebook.com>

�
User Interface Plugins

When thinking about a user interface, one may not understand the importance
that the concept actually has when it comes to interface design and user
experience—that is, every time we decide to put a website or web page online.

No matter how good the content might really be, if the user does not have the
impression of a nice, pleasant website, he or she will most likely never come
back a second time.

The reason is actually extremely simple and perfectly understandable. In fact,
nobody could objectively like or think any good of some fundamental elements
(menus, forms, and so on) randomly scattered around the page without even a
tiny bit of coherency or common sense.

And a poor user interface means total dislike for the product. And something
not appreciated is surely not going to sell (or guarantee any visits), no matter
how good its features or content.

Looks and feel come first, or, at least, play an important part when we have
to decide whether something is worth our attention or not.

We're now going to cover in detail the following topics:

Positioning

Setting equal heights

Other examples of user interface plugins

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins

[136]

As far as the looks of a web page are concerned, a talented web designer will certainly
improve things and make everything look amazing. But the user interface is a somewhat
more tricky issue.

For example, navigation menus are a true pain for most websites, as they fail at providing
the user with a really useful menu. On the other hand, tooltip plugins are an incredibly
neat and interesting solution to offer some sort of quick explanation without breaking the
page content.

Of course, we want the user experience to be the best our guest has ever tried, but we are
using jQuery to achieve this goal, which has some drawbacks—first of all, most of what is
related to the user interface can be modified and improved using just CSS.

However, our plugins will not create anything that would make ourselves look just plain
stupid or inexperienced for not having used a couple CSS instructions instead of two pages
of JavaScript code.

What we're going to learn in this chapter is how some of the most common goals (in terms
of user interface and interaction) can be achieved using jQuery plugins. These plugins can
significantly improve the look and feel of most of the elements the user is usually bound
to interact with.

Positioning
If we were to explain what tooltip plugins do, in a couple of lines, we would be most likely to
say that they allow the user to create tooltips with more or less ease on nearly any element
on the page.

In fact, using jQuery selectors and its own event management features, this type of plugin
can completely replace the dull tooltip that automatically pops out whenever a title attribute
has been set.

Most of the plugins available also offer many advanced options and features to choose from.
These range from a variety of visual effects to styling and fixed/variable width of the tooltip.

Download from Wow! eBook <www.wowebook.com>

Chapter 8

[137]

One of the most popular solutions is the qTip plugin by Craig Thompson
(http://craigsworks.com/projects/qtip/). It provides a package containing
everything a tooltip user would expect from a jQuery tooltip plugin, including the possibility
to change the look and feel of the displayed tooltips and control their behavior in a rather
specific way.

We're now going to have a look at, and understand, how this particular kind of plugin works.

First of all, our main concern might be along the lines of "How do I get to know where to
display the tooltip and how can I make it show up?".

As for the latter, a shrewd reader would probably immediately raise their hand to point out
that there is no problem at all, since we have already faced similar issues earlier in the book
and, thanks to the help of some handy methods, we have finally written some code allowing
us to control the exact position and displaying modes.

To get to a working solution for the first problem as well, we have to mess with JavaScript
events in order to obtain the mouse cursor position. We will have a closer look at this in
the next chapter, dealing with tooltip plugins in detail.

For the moment, reading some slightly outdated (but still very useful) articles by
Peter-Paul Koch on Quirksmode (http://www.quirksmode.org/js/events_
properties.html#position) and Evolt (http://evolt.org/article/Mission_
Impossible_mouse_position/17/23335/index.html) is enough.

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins

[13�]

Time for action – understanding mouse movement events
As a demonstration, we're going to create a simple jQuery script that, when hovering the
mouse pointer over any element, gives back the X and Y coordinates the mouse cursor is
located at.

1.	 You may fill the HTML file with any element you like, this does not matter in
terms of the end result, but it's fundamental you include a span element having
a class result:

(x, y)

2.	 The code to be written into the plugin file, instead, is something along the lines of
the following, and should be called in the index.html file:

(function($) {
 $.fn.xy = function() {
 return this.each(function() {
 $(this).mousemove(function(event) {
 $(".result").text("(" + event.pageX + ",
 " + event.pageY + ")");
 });
 });
 };
})(jQuery)

3.	 Now, every time we hover over an element, the label will update with the current
position. Also, the same happens if we happen to move the cursor on that very
same element, to simulate the tooltip moving according to mouse cursor placement.

Have a go hero – improve the plugin
As we need to do this sooner or later (in next chapter, by the way!), you can now try to
display any element in any area of the page (so it's not necessary to position the "tooltip"
element right next to the cursor for now) once the mouse pointer hovers over the
tooltip target.

Download from Wow! eBook <www.wowebook.com>

Chapter 8

[13�]

For example, take an image. Then, make sure you append or insert the HTML code, which is
needed for the image to show up when the mouse pointer hovers over the selected element.

The next step is to apply some sort of effect (sliding or fading) to it.

Also, you might want to make the element disappear (with some other effect) once the
mouse pointer leaves the element.

The 'mouse out' event

Even though there is no such thing as a "mouse out" event in jQuery, there is the
possibility to attach a function to a mouse out event in some way.

In fact, the hover event may take two arguments:

$(element).hover (mouseOverFunctionPointer,
mouseOutFunctionPointer););

Anonymous functions are also supported (obviously!).

Setting equal heights
Who can state that they have never been presented with the problem of making two or
more columns of the same height? Designers are terrified by this.

Yeah, I can almost hear all the CSS purists out there advocating the cross-browser compatibility
and the consistency of a web page by avoiding any other code block, and eventually criticizing
the need for JavaScript to be enabled. But let's face it, since table-based layouts have been
abandoned for the more flexible, visually appealing, modern design guidelines, we've failed
to see many HTML+CSS equal-height columns.

Indeed, JavaScript offers a simple, quick, and unobtrusive workaround, which is worth the
effort even in terms of usability and performance.

However, with the so-called faux-columns technique, introduced by Dan Cederholm on
A List Apart (http://www.alistapart.com/articles/fauxcolumns/), CSS can
actually be used to create equal-height columns, even though this technique is best suited
for entire page layouts, whereas it might seem relatively tricky when we have to deal with
small boxes or parts of the page content.

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins

[140]

It should be noted that the above-mentioned CSS-only solution works even if JavaScript is
disabled, of course!

The solution in this case is rather simple.

Time for action – setting the same height
In this example, we will check which box is the tallest, then store the said value in pixels, and
make all the other boxes of the same height.

1.	 Create the files we're used to working with, paying particular attention to the
HTML file.

This time, we have specific requirements for its markup, since we need a container
element to put equal-height divisions in, as we're going to make our script work on
children of the selected element(s).

2.	 The type of code we're looking forward to putting into the body element of our file
is something like:

<h1>Variable heights</h1>
 <div class="container">
 <div class="column">

Download from Wow! eBook <www.wowebook.com>

Chapter 8

[141]

 The shortest box
 </div>

 <div class="column">
 A much bigger box is now coming.
Beware!
 </div>

 <div class="column">
 Believe it or not, this box is actually not shorter than the
 previous one. In fact, it's a bit taller.
 </div>

 <div class="column">
 And we've finally got to the last box, which holds the
 record for the tallest box of this page!

 Unfortunately, other shorter boxes will eventually grow
 to this very same height.
 </div>
 </div>
 <br style="clear: left;">

 <h1>Equal heights</h1>
 <div class="container equal">
 <div class="column">
 The shortest box
 </div>

 <div class="column">
 A much bigger box is now coming.
Beware!
 </div>

 <div class="column">
 Believe it or not, this box is actually not shorter than the
 previous one. In fact, it's a bit taller.
 </div>

 <div class="column">
 And we've finally got to the last box, which holds the
 record for the tallest box of this page!

 Unfortunately, other shorter boxes will eventually grow
 to this very same height.
 </div>
 </div>

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins

[142]

3.	 The equal-height script will take care of selecting, one at a time, the children of the
DIV we're calling the method on. It will apply the height of the tallest column to the
other elements (siblings):

(function($) {
 $.fn.equalHeight = function() {
 return this.each(function() {
 var tallest = 0;
 var e = $(this);

 e.children().each(function() {
 tallest = Math.max ($(this).height(), tallest);
 }).css({"height": tallest});
 });
 };
})(jQuery);

Also, we might want to add some CSS code to style the columns, in a separate
stylesheet (jquery.equalheight.css):

body {
 color: #333;
 font-size: 13px;
 line-height: 1.4;
}

.column {
 float: left;
 background-color: #cdeb8b;
 width: 160px;
 margin: 10px;
 padding: 10px;
}

.column:first-child {
 background-color: #deb1de;
}

.column:nth-child(2) {
 background-color: #c3d9ff;
}

.column:last-child {
 background-color: #ffff88;
}

Download from Wow! eBook <www.wowebook.com>

Chapter 8

[143]

'Each' loops

Also note that every time we enter a different element selection (that is, in this
case, we create a new each loop) the jQuery object $(this) points to the
changes. Assigning it to a variable at the very beginning of the code will not only
quicken up the script, but will also help avoid confusion when a lot of different
loops are needed and nested in the code.

Other examples of user interface plugins
Besides the plugins that we have tried and analyzed earlier in this chapter, a lot more
different scripts are available out there. These scripts offer some quality solutions to
common issues and improve the overall user experience through the creation of a better
interface or by tweaking the existing one to avoid various bugs, misunderstandings, and
what not.

Menu plugins
Given their importance on the Web, menus should be handled with extra care.

Actually, the exact opposite happens: how many times have we happened to see a menu
leading to nowhere, or a list of links scribbled down somehow and rather useless for the
end user?

Many of the menu-related plugins available are aimed at improving the style of the menu
itself, or providing an easy and foolproof way to build tree menus or even multi-level menus
in seconds.

We will see how we can realize a jQuery menu plugin later in the book (Chapter 10), with
particular focus on how to enhance the user interaction with these elements and how
to obtain a nice-looking, easy to use and set up menu plugin.

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins

[144]

Form enhancement plugins
Along with form plugins and accessibility plugins come the form enhancement plugins that
are successful in delivering a more enjoyable user experience.

All of those form-related plugins fall in this category with the specific goal of making
things easier to use, understand, and work with for the end user, such as autotab features,
auto-completing fields (see the image below), input suggestions, and so on.

Context menus and tree menus
Sometimes, what the author of a plugin says is worth more than a hundred pages of
approximate explanation and several turns of phrase. So, directly from his web page
(http://abeautifulsite.net/2008/03/jquery-file-tree/), the creator
of the jQuery plugin File Tree, Cory LaViska, says:

jQuery File Tree is a configurable, AJAX file browser plugin for jQuery that lets
you create a customized, fully-interactive file tree with as little as one line of
JavaScript code.

Server-side connector scripts are used to read the file system on your server and
return data to the client side script via AJAX.

This is undoubtedly of great help to those willing to make a navigation menu from
directories. Even if you want to let users browse some of your online folders, this
plugin might come in useful.

Download from Wow! eBook <www.wowebook.com>

Chapter 8

[145]

Another interesting type of plugin dealing with user interface problems involves the creation
of context menus, which overwrite the default mouse right button click event.

The inability to use the mouse buttons at one's will is something really annoying for the
majority of people, which could lead to the user not visiting the page again. Of course, this
does not apply to the web application, which on the contrary enhances the user experience
by activating right-click menus for file browsing and similar tasks.

But using context menu plugins with a little bit of common sense can probably lead to a good
integration of the latter with the above-mentioned file tree plugin.

The end result would, of course, allow the users to act very much as they would on their own
desktop using their favorite file browser. It's worth giving it a shot!

Pop quiz
1. To create a tooltip plugin we need to make use of some events occurring if the

mouse pointer moves over some particular spots.

Namely, we want to use hover and mousemove.

If we were to move the mouse over a very big division element and then move
it around an indefinite number of times, how many times will the two events be
triggered respectively?

A. The hover event would be triggered once (when the mouse cursor enters the
DIV); the mousemove event is triggered every time the cursor moves, so it's
impossible to tell with this information.

B. The hover event would be triggered once (when the mouse cursor enters the
DIV). The mousemove event would be triggered once, too, if we moved the
mouse without stopping at any time.

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins

[146]

C. The hover event would be triggered constantly as long as the mouse cursor is
over the element. The mousemove event would be triggered once, if we moved
the mouse without stopping at any time.

D. The hover event would be triggered constantly as long as the mouse cursor
is over the element. The mousemove event is triggered every time the cursor
moves, so it's impossible to tell with this information.

2. Theoretically, a tooltip should disappear once the mouse cursor moves off the
element we chose as the tooltip target.

How can we recognize that, in fact, the mouse cursor has been moved away from
the element and that the tooltip should be removed or deleted?

A. We can't. That's why we wait until another element that has been assigned
a tooltip is hovered so the previous tooltip disappears and the new one is
shown instead.

B. Adding another (anonymous) function as second argument of the hover
event tells jQuery to run the contained code once the mouse moves out of
the selected element.

C. Using the mouseoff event, which jQuery provided by default, and is triggered
whenever the mouse pointer, after having been over the selected element, is
moved away from it.

D. None of the above.

3. Consider the following code:

$(selector1).each(function() {
 $(this).css({"color": "red"});
 $(this).children().each(function() {
 $(this).parent().css({"color": "blue"});
 $(this).css({"color": "green"});
 $(this).siblings().each(function () {
 $(this).css({"color": "yellow"});
 });
 });
});

What color would each of the elements eventually have?

A. Selector1: blue
each child: green

B. Selector1: red
each child:green
last child: yellow

Download from Wow! eBook <www.wowebook.com>

Chapter 8

[147]

C. Selector1: blue
each child: yellow
last child: green

D. Selector1: red
each child: green

4. Speaking of equal height columns, is it possible to achieve similar results without
any JavaScript script?

A. No, JavaScript is the only way to go if we really look forward to having
equal-height columns in our website layout.

B. No, but we can use some server-side script (such as PHP) to tweak the user
interface of the website so it looks like columns are about the same height, even
though they are actually not. This solution should be used with care, though.

C. Yes, even in many modern CSS-only designs equal-height columns are widely
made use of, and many currently running websites actually have a very well
coded CSS script that makes the magic happen.

D. Yes, but only using the so criticized old table-based layout approach or through
the use of images to create backgrounds in the container element can similar
results be achieved.

Summary
This chapter has shown and explained what user interface plugins are and what are they
supposed to take care of in the real word.

However, very little has been said about the actual ways we can develop them, mainly
because a quick, theoretical approach helps out more than immediately plunging into
development without any knowledge of the matter whatsoever.

To sum up what we have learned so far, we might want to notice the way tooltip plugins are
gaining more and more importance as time goes by, especially thanks to their possibility
of turning back into standard, unstyled tooltips if the user has turned JavaScript support off.

Also, another important role in the Web user interface is played by menu plugins. The goal
of these plugins is to improve the behavior of navigation elements in order to make the
user aware of their position and enhance the look, feel, and general first impression
(which always counts) that the user gets of the page, after a couple of minutes of browsing.

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins

[14�]

In the next few chapters, we're going to discuss what we can do to further improve the user
interface and experience of a generic web page. This will be done through the realization of
a tooltip plugin and a totally different approach to menu integration and improvements.

The next chapter specifically deals with tooltip plugins, and aims to report, in detail, some
examples of already existing plugins that work very well. The chapter will guide you through
the process of the development of an aesthetically pleasant solution that lets the user
change, modify, and customize options, colors (and looks in general), and behavior rather
easily thanks to a slightly more advanced way of handling options.

Read on!

Download from Wow! eBook <www.wowebook.com>

�
User Interface Plugins:

Tooltip Plugins

We might want to start off by saying tooltips are very popular in today's web
design. This is probably due to the value that the tooltips add to the overall look
of a website and the sensible addition to a nice user experience that they will
certainly contribute.

Also, as we have seen for many other plugins, which are not that difficult
to create—provided we know exactly what to do and how to do it—there
shouldn't be much of an issue with developing the tooltip plugin. It may actually
take some time to understand how to position elements based on the mouse
cursor position itself and how to move deftly with an increasing number of
functions doing different things. However, we're now on the path to becoming
experts, and fearless too!

The topics we're going to discuss include:

Tooltip plugins in general

Positioning the tooltip

Merging pieces together

Custom jQuery selectors

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Tooltip Plugins

[150]

Before we get started, there is another little thing worth mentioning: we have decided to
deal with tooltips and menus (in the next chapter) in particular detail. This has been done
not only because these two topics are some of the most discussed and certainly stir up some
curiosity, but because they also provide many different opportunities (more than other type
of plugins, at least!) to introduce new concepts and ideas, even while keeping the complexity
of the whole plugin at a minimum.

We can now go on to create our plugin, starting with basic functionalities, and subsequently
adjusting its goals. We will add new, improved functionalities that, however, do not make the
whole code look too difficult to understand—even after some time or for someone who's
just starting out with jQuery.

Tooltip plugins in general
A lot has been said about tooltip plugins, but it's worth repeating the most important
points with particular regard to the way tooltips are supposed to work, and how we
want our tooltip to behave.

First of all, we might want to get an idea of what tooltips look like and a sample of what we
will accomplish by the end of this chapter. Here is an example:

Also, with some more work and proper application of effects, images, and other relatively
advanced techniques, we can also obtain something more complex and nicer looking, thus
giving the user the chance to specify the style and behavior for the tooltip, as follows:

Download from Wow! eBook <www.wowebook.com>

Chapter 9

[151]

The idea is actually very simple. The elements we have selected will trigger an event every
time we hover the mouse pointer over them.

The tooltip will then pop out, right at the mouse cursor position, retrieving the text portion
from the title attribute of the said element.

Finally, whenever we move the mouse over the same element, the plugin will move and
follow the mouse cursor until it goes off the boundaries of the element.

Positioning the tooltip
The first problem we have to face is, of course, how to make the tooltip appear in the
right position.

It would be no trouble at all if we just had to make some text, image, or anything else
show up. We've done it many times and it's no problem at all—just make their positioning
absolute and set the right top and side distances.

However, we need to take into account the fact that we don't know exactly where the mouse
cursor might be and, as such, we need to calculate distances based upon the mouse cursor
position itself.

So, how can we do it? It's simple enough; we can use some of the JavaScript event properties
to obtain the position. Unfortunately, Internet Explorer always tries to put a spoke in
our wheel.

In fact, the magnificent browser does not (according to this table, which is quite accurate:
http://www.quirksmode.org/dom/w3c_cssom.html#mousepos) support pageX and
pageY, which would normally return the mouse coordinates relative to the document.

So we need to think about a workaround for Internet Explorer, as jQuery (from version 1.0.4
onwards) does not normalize some of the event properties according to W3C standards
(http://api.jquery.com/category/events/event-object/).

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Tooltip Plugins

[152]

The following diagram (also provided in the code bundle) should clarify what the visible
viewport is (that is, the browser window—the red box):

Whenever we scroll down, different parts of the document (blue) are shown through the
browser window and hidden due to space constraints. The scroll height (green) is the part
of the document currently not displayed.

Custom jQuery selectors
Suppose we have a page with some text written in, which also contains a few links to both
internal pages (that is, pages on the same server) and external websites.

We are presented with different choices in terms of which elements to apply the tooltip to
(referring to links as an example, but they apply to any kind of element as well), as follows:

All the links

All the links with a specific class (for example, tooltip)

All the links with the title attribute not empty

All the links pointing to internal pages

All the links pointing to external websites

Combinations of the above

Download from Wow! eBook <www.wowebook.com>

Chapter 9

[153]

We can easily combine the first three conditions with the others (and with themselves) using
CSS selectors appropriately. For example:

$("a"), all the links

$("a.tooltip"), links having a tooltip class

$("a[title]"), links with a title attribute (still have to check if empty)

$("a.tooltip[title]"), links with a tooltip class and a title attribute

As for internal and external pages, we have to work with jQuery selectors instead.

Time for action – creating custom jQuery selectors
Although jQuery makes it easy to select elements using standard CSS selectors, as well as
some other selectors, jQuery's own selectors are the ones that help the developer to write
and read code. Examples of custom selectors are :odd, :animated, and so on.

jQuery also lets you create your own selectors!

1.	 The syntax is as follows:

// definition
$.expr[':'].customselector = function(object, index, properties,
list) {
 // code goes here
};
// call
$("a:customselector")

2.	 The parameters are all optional except for the first one (of course!), which is
required to perform some basic stuff on the selected object:

object: Reference to current HTML DOM element
(not jQuery, beware!)

index: Zero-based loop index within array

properties: Array of metadata about the selector (the 4th
argument contains the string passed to the jQuery selector)

list: Array of DOM elements to loop through

3.	 The return value can be either:

true: Include current element

false: Exclude current element

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Tooltip Plugins

[154]

4.	 Our selector (for external links detection) will then look, very simply, like the
following code:

$.expr[':'].external = function(object) {
 if(object.hostname) // is defined
 return(object.hostname != location.hostname);
 else return false;
};

5.	 Also note that, to access the jQuery object, we have to use the following (since
object refers to the DOM element only!):

$.expr[':'].sample = function(object) {
 alert('$(obj).attr(): ' + $(object).attr("href") + 'obj.href: '
+ object.href);

};

Merging pieces together
We have slowly created different parts of the plugin, which we need to merge in order to
create a working piece of code that actually makes tooltips visible.

So far we have understood how positioning works and how we can easily place an element in
a determined position.

Also, we have found out we can create our own jQuery selectors, and have developed a
simple yet useful custom selector with which we are able to select links pointing to either
internal or external pages. It needs to be placed at the top of the code, inside the closure, as
we will make use of the dollar symbol ($) and it may conflict with other software.

Time for action – creating a tooltip plugin
We still need to think of a way to actually make the tooltip show up and disappear, which is
no big deal after all. Let's see how.

1.	 You should have created the directory containing the right files by now; but anyway,
call the plugin file jquery.tooltip.js and let's move on.

Download from Wow! eBook <www.wowebook.com>

Chapter 9

[155]

2.	 After copying and pasting the code from the various files we used before, we should
end up with something like this:

(function($) {
 $.expr[':'].external = function(object) {
 return(object.hostname != location.hostname);
 };

 $.fn.tooltip = function() {
 return this.each(function() {
 $(this).hover(function(event) {
 // mouse hover
 }, function() {
 // mouse leaves
 }).mousemove(function(event) {
 // mouse moves
 });
 });
 };
})(jQuery)

3.	 We have to take care of a few things now:

Check if the element is actually a link (who knows!)

Check if the title attribute is not empty

Make sure that the default tooltip is not displayed

Apply CSS styling to the tooltip

4.	 We can then add the following code at the very start of the each loop. The event
binding will, therefore, be conditioned to the fact that the selected element is an
element with a title attribute.

Also, we will remove the title content so that the default tooltip will not show up
(note we first save the title content so that we can use its text later on!).

var e = $(this);
var title = e.attr("title");

if(title != '') {
 this.title = '';

 // mouse hover, move and out events
}

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Tooltip Plugins

[156]

5.	 Once the mouse pointer hovers, we need to create the tooltip element, insert
the text, hide it in order to make it fade, and then apply the necessary CSS to it
(update its position).

$('<div id="tooltip" />').appendTo("body")
 .text(title)
 .hide()
 .updatePosition(event)
 .fadeIn(400);

6.	 Eventually, we might want to create another short function to take care of the
update position stuff—since we have to repeat it a couple of times and we have
much more control in terms of what we need it to do with less code.

$.fn.updatePosition = function(event) {
 return this.each(function() {

 $(this).css({
 // we modify the distances by some pixels to make sure
 // the tooltip is visible and put in the best place.
 left: event.pageX+20,
 top: event.pageY-20
 });
 });
};

7.	 As for the events related to the mouse moving out, around, and on the element, we
have the following two lines to do the job very smoothly:

// mouse leaves
$("#tooltip").remove();

// mouse moves
$("#tooltip").updatePosition(event);

8.	 Last, but not least, we need to style the tooltip box to make it a little better looking
and provide absolute positioning.

Include the following code into a CSS file named after the plugin (that is,
jquery.tooltip.css) and make sure that you link it to the page.

#tooltip {
 background: #fbf7aa;
 color: #a2844a;
 position: absolute;
 max-width: 150px;
 padding: 5px;
 border: 1px solid #a2844a;
 font-size: 12px;
}

Download from Wow! eBook <www.wowebook.com>

Chapter 9

[157]

9.	 Our tooltip is finally ready for using, and calling it as we described earlier certainly
will work wonders!

10.	And here is the complete code for our plugin. It has been broken down into smaller
pieces and functions to make for better looking and more understandable code:

(function($) {
 $.expr[':'].external = function(object) {
 return(object.hostname != location.hostname);
 };

 $.fn.updatePosition = function(event) {
 return this.each(function() {
 var xy = getPageXY(event);

 $(this).css({
 left: event.pageX+20,
 top: event.pageY-20
 });
 });
 };

 $.fn.tooltip = function() {
 return this.each(function() {
 var e = $(this);
 var title = e.attr("title");

 if(e.is("a") && title != '') {
 e.removeAttr('title')
 .hover(function(event) {
 // mouse hovers
 $('<div id="tooltip" />').appendTo("body")
 .text(title)
 .hide()
 .updatePosition(event)
 .fadeIn(400);
 }, function() {

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Tooltip Plugins

[15�]

 // mouse leaves
 $("#tooltip").remove();
 }).mousemove(function(event) {
 // mouse moves
 $("#tooltip").updatePosition(event);
 });
 }
 });
 };
})(jQuery)

What just happened?
The whole process for getting a (finally) working tooltip plugin should be clear by now.
Anyway, here's a quick checklist of what we have done and what needs to be done in order
to develop a jQuery plugin similar to ours.

Disable the default tooltip display for elements that match our selection and have a
title attribute (setting it to an empty string is enough for the tooltip not to appear,
but we have to remember to copy the said string to a variable so we can use the text
contained afterwards).

When the mouse pointer hovers for the first time on a link, a new tooltip division
is created. The tooltip box will be appended to the body and will be given absolute
positioning. So we can set its distance from the top and left edges and make it
appear close to the mouse cursor.

As the mouse pointer moves on the link, the tooltip should follow. We thus need
to update its top and left values according to the mouse cursor location.

Eventually, the mouse will move away from the link and the tooltip should
disappear. The whole process will repeat over and over for each link in the page.

Also, a couple more points to discuss are directly related to this script's cross-browser
support and further customization of the tooltip.

As for the first, even though we have actually never taken browsers into account until
now, we should, of course, do whatever possible to get our plugin working on many
different browsers.

This is to our advantage, after all. If the plugin isn't working smoothly in any situation, our
web page will not look good, behave right, or do what we thought it would.

Download from Wow! eBook <www.wowebook.com>

Chapter 9

[15�]

Step by step, plugin after plugin, we are slowly adding more and more concepts and
code into our plugins. This makes for a more advanced approach to plugin development,
taking care of even little imperfections and flaws that our software might have on
different browsers.

As for what customization is concerned, not much can be said, actually. The tooltip box is
contained in a DIV element and, as such, all the normal CSS rules apply.

With little effort, we can thus obtain a more complex and appealing interface for our
plugin—provided we have some skills at CSS writing. Images can be added too, to give
the tooltip some shadow or other effects that CSS-only solutions will not allow.

Have a go hero – add options
Finally, the user should be given the opportunity to customize the tooltip plugin according to
their needs and liking. So an option-less structure (as it is now) isn't actually the best choice
in terms of usability.

It's true that users can include their own CSS file and overwrite every single instruction.
However, some tasks, such as making rounded corners, changing the background, and
selecting the font color, are more suitable for immediate application directly operating on
the code (and thus the function call) rather than going all the way for a separate stylesheet.

Add options to give the user the possibility to change the above-mentioned parameters in a
quick and easy way. You should also parameterize the offsets from the cursor and can add,
along with rounded corners, the animation used when the tooltip is shown.

Pop quiz
1. What are the tasks we have to carry out, and in what order, to successfully develop a

working tooltip plugin for jQuery?

A. Retrieve the mouse pointer's position, disable the default tooltip, create the
tooltip and show it, and remove the tooltip object.

B. Retrieve the mouse pointer's position, create the tooltip and show it, update
the position as needed, and hide the tooltip object.

C. Retrieve the mouse pointer's position, disable the default tooltip, create
the tooltip and show it, update the position as needed, and remove the
tooltip object.

D. Retrieve the mouse pointer's position, create the tooltip and show it, hide the
tooltip object, and update the position as needed.

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Tooltip Plugins

[160]

2. Theoretically, a tooltip should disappear once the mouse cursor pointer moves off
the element that we chose as the tooltip target.

How can we recognize that, in fact, the mouse cursor has been moved away from
the element and the tooltip should be removed or deleted?

A. We can't. That's why we wait until another element, which has been assigned
a tooltip, is hovered upon so that the previous tooltip disappears and the new
one is shown instead.

B. Adding another (even anonymous) function as the second argument of the
hover event tells jQuery to run the contained code once the mouse moves
out off the selected element.

C. Using the mouseoff event, which jQuery provides by default, and is triggered
whenever the mouse pointer, after having been over the selected element, is
moved away from it.

D. None of the above.

3. Which of the following code portions actually does what it's intended for?

A. Select external links.

$.expr[':'].sample1 = function () {
 return (object.hostname !=!= location.hostname);
 };

B. Select external links.

$.expr[':'].sample2 = function () {
 return (object.hostname == location.hostname);
 };

C. Select external links.

$.expr[':'].sample3 = function (object) {
 return (object.hostname == location.hostname);
 };

D. Select links with title attribute matching one of the given strings.

$.expr[':'].sample4 = function (a, b, c, d) {
 var e = eval ("([" + c[3] + ")]");
 for (var i=0; i<e.length; i++)
 if (a.title == e[i]) return true;
 return false;
 };

4. What is a custom selector?

A. In addition to the class and ID selectors, jQuery provides quite a lot of new
selectors, but we are also allowed to create our own in case we don't find
what we need.

Download from Wow! eBook <www.wowebook.com>

Chapter 9

[161]

B. Just a way to tidy up our code, with no real application except for those
situations where we actually need a function-like approach to a problem that
couldn't be solved in any other way due to the particular code structure jQuery
is written in.

C. Creating a selector lets us access a set of functions and method that we would
otherwise never have had a chance to make use of. These new methods allow a
simpler and understandable code-writing style we should look forward to only
when writing particularly complex code portions.

D. None of the above.

Summary
By now the structure lying behind a plugin is rather clear and the points that all of the
plugins seem to share come out with no problem whatsoever. This leads to a quicker and
more confident approach to plugin development.

Also, the development pattern we have followed until now has, of course, maintained a
certain linearity and coherency. But we have gradually introduced different, more advanced,
techniques and have learned a few new tricks that might come in handy at a later time, too.

During the creation of our tooltip plugin we have faced some problems, for which we have
provided some flexible yet direct solutions, thanks to the modularity and object-oriented
approach jQuery lets us make use of, as well as the incredible options available to overcome
a particular hurdle in many different ways.

Our code is getting cleaner and cleaner as we move along, and different functions do
different things.

Specifically, a function is responsible for retrieving the horizontal and vertical coordinates of
the mouse cursor, whereas a method has been designed with the only purpose of updating
the tooltip position based on the distances from the top and left edges.

Our plugin main code eventually had the sole goal of merging these features into a single
piece of code (that is the plugin itself).

With the successful realization of a working tooltip plugin, our first attempt at getting a better
understanding of what a user interface plugin actually is, and how they are supposed to work
to increase the overall quality and visual appearance of the web page, has happily concluded.

The next chapter will instead deal with a different aspect of the user interface: menus. Often
it is overlooked and not given the right amount of importance. The fundamental groupings of
links that link all of the web pages together are indeed a hot target for many user interface
tweaks. We can easily experiment on these with the invaluable help of the jQuery library.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

10
User Interface Plugins: Menu and

Navigation Plugins

No matter what kind of website we are going to build or what particular design
we are looking forward to realizing, following a given inspiration of any kind,
we will need a menu to allow visitors to navigate through our creation.

It's as simple as that, and we can't run away from it in any way. All of the pages
that we have uploaded to our web server and are designed to be available to
the guests to read need to be linked somehow.

Sure, we might use a series of links randomly put inside some text. However, the
point here is to create a functional and easy-to-use interface that even the web
bunglers will be happy (and able!) to make use of.

Since the early days of graphical user interfaces, menus (particularly drop-down
menus for that matter) have been heavily used in both desktop applications
(look around and notice how many drop-down menus are surrounding you
in this very moment!) and in websites and applications, which have quickly
followed suit in the drop-down menu trend. This has eventually led to an
unjustified use of them in many cases.

The topics we're going to discuss include:

Splitting the work in two

CSS: drop-down menu and styling

jQuery: spicing things up

Creating the plugin

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Menu and Navigation Plugins

[164]

The purpose of this chapter is to demonstrate a simple, yet incredibly powerful and efficient
way to create a jQuery plugin to make even plainer the process of making a drop-down
menu starting from a list of links to different pages.

We can then go on to add effects (such as animations and sliding). We could also give the
user the ability to modify colors and the overall look and feel of the menu that they will use
the plugin on.

Splitting the work in two
To make things easier to sort out, we are going to work on two different pieces of code. We
will then have to wrap them together to eventually obtain the desired plugin.

The first part is dedicated to the task of building a working CSS-only drop-down menu that
works without JavaScript (even in Internet Explorer 6, possibly!), which requires a lot of extra
markup and CSS code to begin with.

A lot of articles have been written on the topic of CSS drop-down menus, and several
discussions arose concerning the most disparate issues in terms of cross-browser
compatibility and best practices that developers and designers should follow to achieve
high-level results.

A short, incomplete list follows. This might be useful to have a better grasp of what people
are most interested in (when speaking of CSS-only drop-down menus) and what issues we'll
be referring to at a later time:

Suckerfish drop-down by Patrick Griffith on A List Apart:
http://www.alistapart.com/articles/dropdowns/

Create drop-down menus with CSS only by Janko Jovanovic:
(http://www.jankoatwarpspeed.com/post/2009/06/20/Create-
dropdown-menus-with-CSS-only.aspx

Download from Wow! eBook <www.wowebook.com>

Chapter 10

[165]

How to make a simple CSS drop-down menu by Grace Teng on Evolt:
http://www.evolt.org/node/52030

Horizontal and Vertical CSS Menu Tutorial by Claire from Tanfa on SEO consultants:
http://www.seoconsultants.com/css/menus/tutorial/

The ULTIMATE CSS only drop-down menu by Stu Nicholls on CSSplay:
http://www.cssplay.co.uk/menus/final_drop.html

As far as the second and last part of our development pattern is concerned, a slight effort is
now required in order to understand and put in into practice the power that jQuery gives us
on this occasion.

Provided we have a working CSS-only drop-down menu at hand, what we need to
accomplish with jQuery is, in the first instance at least, adding a bit of flavor to what we
have just developed. We might want to add animation effects, or even other more advanced
techniques to get the best out of our menu implementation.

One thing must call our attention, now: we're still working on a precise, defined
element—one, and only one element—doesn't sound like a plugin, does it?

In our last part, our objective is to make what we have obtained until that point applicable
to any list element whatsoever, and effectively develop a jQuery plugin with all its related
bells and whistles.

CSS: Drop-down menu and styling
Before starting to write code and thinking of how to get over some of the problems we'll
stumble upon, we might want to have a look at how a CSS menu (or even a full working
menu with jQuery effects) could look and behave when the mouse pointer hovers on any
of its links.

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Menu and Navigation Plugins

[166]

As you may have noticed in the live applications of the previously mentioned menus,
whenever we hover the mouse pointer over a top-level link, a new sub-menu pops up from
nowhere. Also, if the link we hover on has no sub-menus (for whatever reason) nothing
happens, and we are still able to click and follow the link on the top-level menu.

Time for action – creating and styling the menu
As our first step towards the end product (that is, for this section, a working drop-down
menu), we have to define our basic menu hierarchy in order to eventually maintain a
structured and semantic approach.

1.	 We'll use a simple, nested unordered list of standard links for this purpose. The
top-level list (main menu) will be identified by the menu ID, whereas nested lists
(sub-menus) will be defined as follows:

<ul id="menu">

 Link 1
 <!-- no sub menu -->

 Link 2 (with submenu)
 <!-- submenu -->

 Link 2.1 (with submenu)

 Link 2.1.1
 <!-- no sub menu -->

 Link 2.1.2
 <!-- no sub menu -->

 Link 2.2
 <!-- no sub menu -->

Download from Wow! eBook <www.wowebook.com>

Chapter 10

[167]

 Link 2.3
 <!-- no sub menu -->

 Link 3 (with submenu)
 <!-- submenu -->

 Link 3.1
 <!-- no sub menu -->

 Link 3.2
 <!-- no sub menu -->

2.	 Even though this code listing looks awfully long, it's actually because the list
hierarchy is more clearly visible this way.

As a first preview, here is what the previous code produces (with no CSS styles
applied yet!):

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Menu and Navigation Plugins

[16�]

3.	 With our HTML and link structure written, we can now proceed to apply some basic
hover techniques that are included in CSS.

It is best to take this opportunity to apply some basic styling to the list (the next
step), such as floating the parent unordered lists in a row, and specifying the width
of the unordered list to ensure that no shifting occurs when the elements are hidden
or shown.

4.	 Firstly, we have to take care of hiding all of the sub-menus, which will be shown only
when the mouse pointer hovers over their parent link.

#menu li ul {
 display: none;
}

#menu li:hover > ul {
 display: block;
}

5.	 Now, hovering the mouse pointer over any of the links in the main menu list will
result in its sub-menu element being shown. If we have another nested menu, its
sub-menu will not be shown unless we hover the pointer over its parent link
as well.

6.	 We then proceed to placing the menu in a horizontal fashion, and also specifying the
minimum and maximum width allowed for menu items:

#menu, #menu ul {
 list-style-type: none;
 list-style-position: outside;
 margin: 0;
 padding: 0;
 position: relative;
}

#menu li {
 float: left;

Download from Wow! eBook <www.wowebook.com>

Chapter 10

[16�]

 width: 200px;
 position: relative;
}

#menu li ul {
 display: none;
}

#menu li ul li ul {
 position: absolute;
 left: 200px;
 top: 0;
}

#menu li, #menu li a{
 background-color: #444;
 color: #eee;
 float: left;
 margin: 0;
}

#menu a {
 float: left;
 padding: 5px;
 width: 190px;
 text-decoration: none;
 font-weight: bold;
 font-size: 12px;
}

#menu a:hover {
 background-color: #666;
 color: #fff;
}

7.	 The CSS style will then help to make the menu work like the following. Of course, we
still need to improve things using jQuery and also write a traditional plugin before
we're done with it:

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Menu and Navigation Plugins

[170]

Have a go hero – overcome Internet Explorer problems
Unfortunately, the lovely :hover pseudo-class may have some problems with earlier
versions of Internet Explorer; that is, it may not work properly.

To get over this problem and actually have a script working with older versions of Internet
Explorer as well, we need to implement a JavaScript solution.

A possible and suggested solution is to make use of some of the methods that we have
already analyzed and used previously. These methods provide a way to access the hover
events of any element in the document.

With the help of such methods, we can then apply, through jQuery, the CSS code we need
to make the whole thing work on other browsers as well.

Write the necessary code to make sure the script works in browsers that do not support the
:hover pseudo-class.

jQuery: Spicing things up
OK, we now have a working CSS-only drop-down menu.

We also have jQuery at hands' reach. Not using it would only result in avoiding a lot of
fun-to-write code and not seeing how things interact with each other.

Time for action – adding a fading effect
Here we go again. Using our beloved functions will help us deal with mouse hover and
mouse out events. Eventually, we will add some tweaks to our script and make everything
look and behave in a cuter fashion.

1.	 Write the following code into the "document ready" statement, so that our menu
elements will eventually fade in (on mouse hover) and disappear when the mouse
cursor is moved away from the link.

$(document).ready(function() {
 $("#menu li").hover(function() {
 $("ul:first", this).css({ visibility: "visible"
 }).fadeIn(600);
 },function() {
 $("ul:first", this).hide();
 });
});

Download from Wow! eBook <www.wowebook.com>

Chapter 10

[171]

2.	 Hovering over any link, which has a sub-menu attached, will now lead to a fade
effect, which will doubtlessly improve the overall look and feel of the web page.

Have a go hero – try out other effects
Of course, jQuery is not limited to fading effects only.

Try experimenting with different effects and animations (such as sliding techniques or menus
popping out), which can all be applied to our new-born menu element with a couple of lines
of code.

Do not worry about the outcome for now. We'll have a closer look at the actual power of
animations and similar effects later in the book.

Creating the plugin
Just one last thing is left to obtain for our long-awaited plugin: the plugin structure itself!

Until now what we have created is a very cool script for animating a drop-down menu.
However, our first goal was to have a plugin to be used in different situations to turn a
standard unordered list of elements into a drop-down menu.

We're almost there, anyway.

Time for action – creating the plugin
As our last step, we have to merge all the pieces together to eventually obtain a plugin,
which does exactly what we were after.

1.	 As usual, we need a directory named menu and the other basic necessary files as
well. A CSS document (possibly named jquery.menu.css) is needed, too!

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Menu and Navigation Plugins

[172]

2.	 We'll need the CSS file to be included along with the menu plugin, as it will be part
of the plugin itself, providing the basic style and overall look to the menu.

The only change we need to make to the CSS code that we've already written
is replacing all of the #menu occurrences (referring to an element ID) with
.dropdownMenu (thus referring to an element class). The reason for this is that, in
case we have more than one menu on the same page, we want them to be able to
operate individually.

Also, this means that, in order to make the plugin work, the user is not required to
assign the dropdownMenu class to any list element that they need to be turned into
a drop-down menu. This will be taken care of in our plugin as well.

3.	 Here is the simple plugin code that makes everything work smoothly:

(function($) {
 jQuery.fn.menu = function() {
 return this.each(function() {
 $(this).addClass("dropdownMenu");

 $("li", this).hover(function() {
 $("ul:first", this).css({ visibility: "visible" })
 .fadeIn (600);
 },function() {
 $("ul:first", this).hide();
 });
 });
 };
})(jQuery)

4.	 Now, having a standard list of links, we may use the following to turn it to something
more appealing to the average user:

$(document).ready(function() {
 $("#menu").menu();
});

What just happened?
Even though the whole process is rather straightforward, there's always a little detail that
could be overlooked and, thus, left behind.

In order to have a clear understanding of what's been done from the very beginning (HTML
code to create a standard list) to the end (jQuery plugin), we may use the following points to
better remember some of the so-called checkpoints:

Download from Wow! eBook <www.wowebook.com>

Chapter 10

[173]

Create a simple HTML unordered list

This is nothing but one of the basic requirements we're going to work on and
with. In fact, this list (that will be our menu) is organized with a series of links
representing the menu elements, and a handful of nested lists to represent our
sub-menu structure.

Style the list into a menu-shaped element

Basically, we are looking ahead to obtain a horizontal drop-down menu, and, with
this in mind, we should aim at creating something that at least looks like one. We
then need sub-menus and second-level links to be hidden by default, but suddenly
visible once the user hovers the pointer over the parent elements nonetheless.

Also, once the mouse pointer moves off the link or clicks on it, everything should
revert to normal: only top level links are shown.

Add jQuery effects

jQuery, once again, may be of great help in case we want something more than just
a simple, plain, CSS-only drop-down menu.

Still working fine on browsers that do not support JavaScript, our menu can have
that nice flavor thanks to the bundle of effects the jQuery library provides along
with the basic package.

Create the plugin

As silly as it sounds, we are not done yet. The plugin is still undone! To put already
shamefully simple things down in an even simpler way, we are to make our script
work on multiple lists at the same time, leaving out all the predetermined portions
of the code.

That said, we are replacing all the IDs and classes referring to a particular, specified
element (or list) with references to elements belonging to the list we are running
the plugin on.

Have a go hero – allow users to customize the plugin
We have got a nice, working plugin, sure, but what about user customization?

Create an options structure to allow users to specify some details (such as colors, menu
width, and so on) without the need to edit any other file.

Changes will be made at run time. This means that the default stylesheet provides the
basic look and feel of the menu, whereas the options passed by the user may change
some particular aspects of the menu.

Download from Wow! eBook <www.wowebook.com>

User Interface Plugins: Menu and Navigation Plugins

[174]

Pop quiz
1. After having read the possible way to obtain a CSS + jQuery drop-down menu, which

of the following is the best path to follow in order to get a working plugin?

A. The order in which we create the menu, CSS code, and jQuery functions does not
matter as long as the plugin does not modify in any way the original CSS code.

B. Creating the menu plugin is the last task, which is to be taken care of only once
the CSS code has been implemented into the JavaScript portion of the script.

C. Create the plugin after having put together the jQuery effects and the basic
CSS styling that will be applied to the selected menu element, consisting of
nothing more than a simple HTML element containing any number of nested
unordered lists.

D. None of the above.

2 Our plugin is known to have some issues when dealing with the Microsoft Internet
Explorer browser.

Of what nature is this trouble and how can the problem be (possibly) solved?

A. The problem lies in the impossibility, in certain circumstances, of Internet
Explorer recognizing the :hover pseudo-class, forcing us to avoid its use
if we aim at realizing a cross-browser solution.

B. The problem lies in the impossibility, in certain circumstances, of Internet
Explorer to recognize the :hover pseudo-class, forcing us to use JavaScript to
make the script cross-browser.

C. The problem lies in the impossibility of Internet Explorer to recognize the hover
event, forcing us to use the CSS :hover pseudo-class to get things done.

D. None of the above.

3 From a compatibility point of view, on what kinds of browser can our plugin work
correctly (and why)?

A. Our plugin code is intended to work on all browsers, since its code makes
the menu work even without the aid of jQuery, which is responsible for the
animation part only; it is true, though, that the user will have to manually add
the right class name to their menu of choice, since, with no JavaScript support,
jQuery won't load the plugin code, too.

B. Our plugin code is intended to work on all browsers, since its code makes
the menu work even without the aid of jQuery, which is responsible for the
animation part only.

Download from Wow! eBook <www.wowebook.com>

Chapter 10

[175]

C. All browsers that support JavaScript, since our plugin heavily relies on
this technology to make the menu work, which it wouldn't if there was
no JavaScript code.

D. None of the above.

Summary
This chapter has guided us through the creation of a simple yet (almost) nice to look at and
versatile plugin to make the realization of drop-down menus relatively easy and accessible.

We have dealt with a horizontal menu only, but this does not mean that no other menu
types are available for use and inspiration. In fact, just as horizontal drop-down menus exist,
so do vertical menus (which, of course won't "drop down").

The above image, taken from the result of an article at A List Apart
(http://www.alistapart.com/articles/horizdropdowns/), for example, is a
sample of what can be done applying some of the techniques explained earlier, but thinking
of the menu vertically rather than horizontally, using only a few lines of CSS code to make it
work exactly how a vertical menu is supposed to work.

Also, in case animations and the other various effects have left you wondering how is this
possible, well, the very next chapter comes with great timing, since it will discuss in detail
some of the ways such effects and other advanced animation techniques are obtained and
can be included into our plugins with little effort.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

11
Animation Plugins

As time went by, we've all noticed a significant increase in the number of
websites that have turned to animation effects in order to make pages look
(and feel) better, easier to interact with, and definitely fun to use.

People are drawn to this kind of enhancement, and they often don't resist the
urge to click on something that moves smoothly or bounces across the edges
of their browser window.

Effects such as these that we're talking about can be achieved in many different
ways. One thing is for sure, jQuery can handle all of these animations, and
we're actually going to have a closer look at what makes the "magic" happen
and, most importantly, how it happens in terms of code and page layout.

Also, it is important to understand the different types of animation that can
be achieved through the use of jQuery. These animations will certainly find
different applications depending on their function.

The following topics will be covered in this chapter:

Sliding

Fading

The animate() method

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[17�]

Sliding
Much like fading, sliding is a simple trick that, as the name suggests, makes something move
smoothly; for example, a panel sliding from one edge of the page to the other.

Though fading techniques have vast usage in a number of different applications, I happen
to like sliding better and see it as the "right" solution for many enhancements out there.

What does "sliding" actually mean?
jQuery provides the following three methods for applying sliding motions to elements on a
web page:

.slideUp()

.slideDown()

.slideToggle()

Though guessing what .slideUp() and .slideDown() do is not that hard, slideToggle is
worth some words (from the jQuery documentation pages on the topic of .slideToggle()
method):

The .slideToggle() method animates the height of the matched elements. This
causes lower parts of the page to slide up or down, appearing to reveal or conceal
the items. If the element is initially displayed, it will be hidden; if hidden, it will
be shown. The display property is saved and restored as needed. If an element
has a display value of inline, then is hidden and shown, it will once again
be displayed inline. When the height reaches 0 after a hiding animation, the
display style property is set to none to ensure that the element no longer affects
the layout of the page.

They are all called in the same way and do not need any arguments (that is, they
are optional):

.slideUp([duration], [callback])

.slideDown([duration], [callback])

.slideToggle([duration], [callback])

Where:

duration: Is a string or number determining how long the animation will run.

callback: Is a function to be called once the animation ends.

Again, duration can be a number (in milliseconds) or either of the strings "slow" and "fast".
The default duration (if no argument is passed or a string other than "slow" or "fast" is
passed) is 400 milliseconds.

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[17�]

Sample plugins that "slide"
The following are some examples on how to use these sliding techniques at their best and
eventually implement a more complex plugin that makes use of both slide and fade effects:

Slide-in contact form by Janko Jovanovic – with step-by-step instructions!

http://designshack.co.uk/tutorials/creating-a-slide-in-jquery-
contact-form

iPod-style drilldown menu by Maggie Costello Wachs

http://www.filamentgroup.com/lab/jquery_ipod_style_drilldown_
menu

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[1�0]

CrossSlide by Tobia Conforto

http://tobia.github.com/CrossSlide

Creating an accordion plugin (that slides!)
If you don't know what an accordion plugin is, just think about those fancy things that,
basically, are a series of panes. When one pane slides down, the other pane slides up, leaving
only one pane (the selected one) visible all the time.

Here is an example of what we'll end up with. Clicking on one of the headers will cause
the related content to be displayed, and all other boxes to collapse with a scrolling motion
(the image is from http://bassistance.de/jquery-plugins/jquery-plugin-
accordion/):

Time for action – creating sliding panes
Our goal is to end up with a plugin that behaves in exactly the same way as the preceding
example. There's nothing excessively complicated but, as usual, we will get to know some
handy functions that might be useful in a number of different situations.

1.	 Create a new directory called accordion, and copy over the needed files. Then
create a new JavaScript file for our plugin (jquery.accordion.js).

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[1�1]

2.	 We first need to set up the structure of our accordion. It's very simple and
straightforward, as we will make use of divisions. Each division represents a
pane, and each pane will necessarily consist of at least two elements: a header
and a paragraph.

<div id="pane-container">
 <div class="pane">
 <h1>First pane</h1>
 <p>This script should allow only one pane to be visible at a
 time.</p>
 </div>

 <div class="pane">
 <h1>Second pane</h1>
 <p>This script should allow only one pane to be visible at a
 time.</p>
 </div>

 <div class="pane">
 <h1>Third pane</h1>
 <p>This script should allow only one pane to be visible at a
 time.</p>
 </div>
</div>

3.	 The header part will always be visible, and users will be able to see the panes by
clicking on the corresponding header.

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[1�2]

4.	 Create another file called style.css. We'll use this file to style our page and make
it look a little appealing. Enter the following code:

#pane-container {
 margin: 0;
 padding: 0;
 width: 200px;
}

.pane h1 {
 padding: 5px;
 cursor: pointer;
 position: relative;
 background-color: #4c4c4c;
 color: #fff;
 font-weight: normal;
 font-size: 20px;
 margin: 0;
}

.pane p {
 padding: 10px;
 margin: 0;
 background-color: #e4e4e4;
}

This should result in a result similar to the following screenshot:

5.	 Now, our first goal is to hide all the parts that aren't supposed to be shown in the
first place (that is, paragraphs).

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[1�3]

Remember to call the plugin function on the pane container:

$("#pane-container").accordion();

Our basic plugin structure will then be filled as follows:

(function($) {
 $.fn.accordion = function() {
 return this.each(function() {
 $(this).find("p").hide();
 });
 };
})(jQuery)

6.	 Next, when the user clicks on a heading, the corresponding pane should slide down
(or up if it is already visible).

$(this).find("h1").click(function() {
 $(this).next("p").slideToggle(700);
});

7.	 It should be noticed, though, that panes won't slide back up when a different
heading is pressed.

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[1�4]

8.	 To fix this behavior, the following code determines what the panes should
look like:

(function($) {
 jQuery.fn.accordion = function() {
 return this.each (function() {
 var e = $(this);

 e.find("p").hide();
 e.find("h1").click(function() {
 $(this).next("p").slideToggle(700).parent().siblings()
 .children("p").slideUp("slow");
 });
 });
 };
})(jQuery)

9.	 So far so good, but we can also add a customization option to let the user select the
pane to be open by default (if the users want any pane open by default, of course).

10.	Using the :eq (or :nth-child, which is 1-indexed) built-in selector, we can easily
develop this feature, making the plugin determine which pane to show on
page load.

(function($) {
 $.fn.accordion = function(options) {
 var defaults = {
 visibleByDefault: 2
 };

 var o = $.extend(defaults, options);

 return this.each(function() {
 var e = $(this);

 e.find("p").hide();

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[1�5]

 e.children(":eq("+o.visibleByDefault+")").children("p")
 .show();
 e.find("h1").click(function() {
 $(this).next("p").slideToggle(700).parent().siblings()
 .children("p").slideUp("slow");
 });
 });
 };
})(jQuery)

Note that :eq is zero based. So the first element will correspond to 0.

What just happened?
The overall functioning of the plugin should be easy to understand. Some hints on how the
functions have been put together would certainly help.

First off, find() and children(): our plugin is strongly based on them, and they each do
very similar things.

However, though the find() method "gets the descendants of each element in the current
set of matched elements", children() "gets the children of each element in the set of
matched elements".

The difference might sound silly, but with children() we only get the first-level
descendants (children, exactly!), whereas the find() method goes down many levels.

When the structure of the HTML is predetermined, it usually does not make sense to use
find(), as it could result in poor performance. The performance hit might be ignorable,
but it still makes the code less desirable.

If we had to use children() only, the portion of code that retrieves the paragraphs would
read (according to the fact that we are allowed to go through one level at a time):

$(this).children ().children ("p")

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[1�6]

As for siblings() and parent(), they respectively return what their names suggest; that
is, siblings (all nodes at the same level) and parent elements of the selected element(s).

Note that parent() only goes up one level (much like children()), but you can use
parents() to get a set of elements corresponding to all parent elements.

Lastly, as slide functions have already been dealt with, we're going to spend some words on
the speed at which the animation completes.

This brief thought also applies to any other method that allows users to enter a custom
"duration" value.

Note that the higher the number you supply, the longer the animation will take. Conversely,
the lower the number you supply, the quicker the animation—this is not the speed, but how
long the animation takes to complete (that is, the duration)!

Have a go hero – make changes
This simple plugin also lies open to different applications. Its simple design can be easily
modified to work as a menu, which is not an unusual end product for this type of script.

Also, the event triggering the display of the panes can be changed to something more
suitable to the situation.

Create another plugin, very similar to this one, which shows the panes whenever the mouse
pointer hovers over the corresponding header. The pane should then slide back up once the
mouse pointer leaves the area.

Also try to create another version of this plugin in which a default pane opens (siding down)
when the mouse pointer does not hover over any other element of the selection.

Fading
Actually, there's little to say about these techniques as we've already used some of them in
our previous plugins. However, a fresh explanation with some more details is always useful.

What does "fading" actually mean?
There are three fading methods that we can use in any jQuery code we write:

fadeIn()

fadeOut()

fadeTo()

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[1�7]

Any fade method is always a change in the opacity of the element. If the fadeIn()
method progressively increases the opacity of the element until it is fully opaque, the
fadeOut() method does the opposite—thus, starting from an opaque element, making it
invisible (hidden).

The fadeTo() method can be used to fade an element to a certain value of opacity, in a
scale from 0 (invisible) to 1 (fully opaque).

Fading methods are called as follows:

.fadeIn(([duration], [callback])

.fadeOut([duration], [callback])

.fadeTo([duration], [opacity], [callback])

Where:

duration: Is a string or number determining how long the animation will take. The
strings "fast" and "slow" can be used instead of 200 and 600 ms respectively.

opacity (fadeTo() only): Is a number between 0 and 1 determining the
target opacity.

callback (optional): Is a function to call once the animation is complete.

Sample plugins that "fade"
Fading effects are used in a variety of plugins, often to enhance user experience and give the
plugin an improved look.

However, here are some of the most interesting uses of fading effects and a quick
explanation of how to obtain similar results:

InnerFade by Torsten Baldes

http://medienfreunde.com/lab/innerfade/

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[1��]

jGrowl by Stan Lemon

http://stanlemon.net/projects/jgrowl.html

Color Fading Menu by Liam Goodacre

http://css-tricks.com/color-fading-menu-with-jquery/

Creating a fading news ticker plugin
Our last interaction with fading effects is going to let us create a fade-related plugin and
obtain some great results that can be applied to other plugins as well.

Though the fading effect cannot be reproduced in print, the following screenshot represents
the final result, in terms of look and feel, of the news ticker plugin we're about to realize:

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[1��]

Time for action – creating the plugin
The news ticker plugin, which we will obtain by the end of this section, is a clear example of
how the same (or similar) effects can be applied to different kind of plugins to enhance their
appearance or usability.

1.	 Create a new directory, name it news-ticker (not new-sticker!), and copy over the
necessary files.

2.	 Our plugin file, jquery.ticker.js, will obviously contain the code that we will
need to create the animation. In the meantime, we can enter the basic HTML
structure of a sample page into our file index.html. Each news will consist of a
header and a body, which are both wrapped into a news division.

<div id="news-container">
 <div class="news">
 <h1>Lorem ipsum dolor</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Ut varius tempus felis, et volutpat sapien facilisis vitae.
 Duis consectetur tempor auctor.</p>
 </div>

 <div class="news">
 <h1>Vivamus lobortis faucibus</h1>
 <p>Vivamus lobortis faucibus dolor eget imperdiet. Maecenas
 gravida aliquet quam in congue. Ut lobortis est a quam
 convallis tempus. Maecenas nunc neque, ullamcorper at
 ultricies sed, malesuada in sem. Morbi at nulla in nisi
 imperdiet tempus.</p>
 </div>

 <div class="news">
 <h1>Morbi sagittis</h1>
 <p>Morbi sagittis tincidunt diam, id luctus velit fermentum
 semper. Morbi faucibus, diam a sollicitudin consectetur,
 tellus neque molestie lacus, dictum tempor justo neque id
 erat. Maecenas ut nunc at magna convallis dapibus.
 Suspendisse neque mauris, elementum at congue non,
 elementum nec ante. Nunc nisi leo, placerat eu lobortis
 sed, dictum non nisi.</p>
 </div>

 <div class="news">
 <h1>Praesent bibendum lorem</h1>

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[1�0]

 <p>Praesent bibendum lorem at nulla vestibulum semper. Nunc
 eget tristique erat. Morbi ut nibh id eros auctor blandit
 sed eget nisi. Ut vel felis magna. Nunc odio augue, porta
 a vulputate sit amet, pellentesque in mi. Mauris luctus
 urna eget velit semper at tempus nisi volutpat.</p>
 </div>
</div>

3.	 The checklist of things to do, in order to make the plugin work as we expect it to, can
be summed up as follows:

Hide all news items except the first one, which is visible by default.

The news item remains visible for a given amount of time, after
which it fades out.

At the same time, the next news item should appear with some
fading effect.

The cycle continues until the last news item has been displayed,
and then the whole process starts over from the first item.

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[1�1]

4.	 Using the jQuery built-in selectors, we can easily select all but the first child of a
given object:

$(this).children(":not(:first)").hide();

5.	 Immediately after, using the setInterval function, we can call a function
repeatedly, with a fixed time delay between each call:

setInterval(function() {
 // function content
}, 2000);

6.	 Now, the technique to cycle over child elements is really simple:

We select the first child of the news container (that is, the first
news item visible by default for the user to read).

Applying the fadeOut() method on the selected element,
it disappears.

We select the next sibling of the element using the next()
method and make it fade in.

We then move the news item that has been hidden to the bottom
of the queue—that is, after all of its siblings, at the bottom of the
news container.

Repeating this procedure over and over (thanks to the
setInterval function) makes the news ticker work.

And, best of all, we can chain all of this together!

(function($) {
 $.fn.ticker = function() {
 return this.each(function() {
 var e = $(this);

 e.children(':not(:first)').hide();

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[1�2]

 setInterval(function() {
 e.children(":first").fadeOut().next().fadeIn().end()
 .appendTo(e);
 }, 2000);
 });
 };
})(jQuery)

What does end() end?

"end() ends the most recent filtering operation in the
current chain and returns the set of matched elements
to its previous state."

In fact, our code selects the first child (eq(0)), fades it out, and
selects the next item to make it fade in. If we had chained the
appendTo() method at this point, the item actually appended
to the container would have been the just faded in news, instead
of the one that disappeared!

But thanks to the end() function, we go back to our previous
selection and append the right element.

7.	 Also note that a problem we have is an erroneous fade effect.

In the short period of time during which the two divisions fade out and in, it looks
like they are, for a very brief moment, one right beneath the other and, once the
top news item has completely faded out, the replacement element moves to its
right place.

This is easily solved by using absolute positioning, which can be implemented
through some CSS code (together with a basic style to make the whole thing
look a little bit better):

#news-container {
 position: relative;
 width: 250px;
}

.news {
 position: absolute;
 left: 0;
 top: 0;
 border: 1px solid #ccc;
}

h1 {
 font-size: 14px;

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[1�3]

 font-weight: bold;
 text-transform: uppercase;
 color: #ff0088;
 border-bottom: 1px solid #ccc;
 padding: 5px;
 margin: 0;
}

p {
 font-size: 13px;
 text-align: justify;
 color: navy;
 padding: 5px;
 margin: 0;
}

Here is our end result:

8.	 Of course, further improvements are possible. For example, we might want to let
the user specify a custom time delay, or even start the animation from a news item
other than the first one.

9.	 Using the standard options structure, any customization is as easy as writing a
couple lines of code, while the :first selector lets us add some spice to our plugin.

(function($) {
 $.fn.ticker = function(options) {
 var defaults = {
 startWith: 0,
 showDelay: 2000
 };

 var o = jQuery.extend(defaults, options);

 return this.each(function() {
 var e = $(this);

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[1�4]

 e.children(":lt("+(o.startWith)+")").appendTo(e);

 e.children(':not(:first)').hide();

 setInterval(function() {
 e.children(":first").fadeOut().next().fadeIn().end()
 .appendTo(e);
 }, o.showDelay);
 });
 };
})(jQuery)

Have a go hero – add fading effects
Experiment with all the fade methods (fadeIn(), fadeOut(), fadeTo()) and create
a simple plugin that, based on user input, can animate an object with either fade or
slide functions.

The plugin will then need at least one parameter to let the user choose the preferred type
of animation.

Also, an additional feature could make it possible for the user to choose opacity values
to which the element will fade, if the right function has been selected.

The animate() method
The animate method is one of the most powerful animation functions we have a chance
to use.

Given a set of CSS properties, this method performs a custom animation, transforming the
selected (set of) element(s).

Understanding the jQuery animate() method
The jQuery animate() function is a very powerful way to manipulate HTML elements,
adding any type of animation functionality to any kind of element on the page, as long
as CSS properties can be applied to it.

The syntax of this method is as follows.

.animate(properties, [duration], [easing], [callback])

.animate(properties, options)

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[1�5]

Specifically:

properties is a map of CSS properties that the animation will move towards.

duration is a string or number determining how long the animation will run.

easing is a string indicating which easing function to use for the transition.

callback is a function to call once the animation is complete.

options is a map of additional options to pass to the method. The supported
keys are:

duration

easing

complete: Same as callback

step: A function to be called after each step of the animation

queue: A Boolean indicating whether to place the animation in the
effects queue

specialEasing: A map of one or more of the CSS properties
defined by the properties argument and their corresponding
easing functions

To better understand what easing functions are, we can read what
the jQuery documentation reveals on the subject:

"An easing function specifies the speed at which the animation
progresses at different points within the animation. The only easing
implementations in the jQuery library are the default, called swing,
and one that progresses at a constant pace, called linear. More
easing functions are available with the use of plug-ins, most notably
the jQuery UI suite (http://jqueryui.com)."

Time for action – creating your first animation
To test how animation works, we are going to create a series of simple scripts that will help
us understand how this method works, and how its arguments can be used in order to obtain
better results in our jQuery coding experience.

1.	 In an HTML file, paste the following code, which animates the width and height of
a DIV:

<html>
<head>
 <script src="jquery.js"></script>

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[1�6]

 <script src="jquery.accordion.js"></script>
 <script>
 $(document).ready (function () {
 $("#dimension-button").click(function() {
 $("#dimension-div").animate({ "height": "100px",
 "width": "200px" });
 });
 });
 </script>

 <style type="text/css">
 #dimension-div {
 background-color: green;
 color: white;
 width: 150px;
 height: 40px;
 padding: 5px;
 }
 </style>
</head>
<body>
 <button id="dimension-button">Click me!</button>
 <div id="dimension-div">Change dimensions</div>
</body>
</html>

2.	 Clicking on the button will make the green box grow in size; its height and width will
increase at the same time.

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[1�7]

3.	 In a similar fashion to combining animations, we can also queue them: once the
first has finished, the other one will immediately be executed. This behavior
can be avoided by setting the parameter queue to false when passing the map
to the function.

$("#dimension-div").animate({ "height": "100px" })
 .animate({ "width" : "200px" });

4.	 Basically, all numeric CSS properties can be animated, except for a few
(that is, colors) that have been added by an officially supported plugin, color
(http://plugins.jquery.com/project/color/), nonetheless.

5.	 A moving object is also possible. Refer to the following code for a simple example:

<script>
$(document).ready (function () {
 $("#moving-button-top").click (function () {
 $("#moving-div").animate ({ "top": "-=50px" });
 });

 $("#moving-button-left").click (function () {
 $("#moving-div").animate ({ "left": "-=50px" });
 });

 $("#moving-button-right").click (function () {
 $("#moving-div").animate ({ "left": "+=50px" });
 });

 $("#moving-button-bottom").click (function () {
 $("#moving-div").animate ({ "top": "+=50px" });
 });
 });
</script>

<style type="text/css">
 #moving-div {
 background-color: green;
 color: white;
 width: 150px;
 height: 40px;
 padding: 5px;
 position: absolute;
 top: 220px;
 left: 8px;
 }

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[1��]

</style>
<button id="moving-button-top">Top</button>

<button id="moving-button-left">Left</button>
<button id="moving-button-right">Right</button>

<button id="moving-button-bottom">Bottom</button>

<div id="moving-div">Moving</div>

Having a -= (or +=) operator will increase (or decrease) to the
current value.

6.	 Last but not least, a callback function, which will run once the animation is
completed, once for each element, can be specified.

$("#callback-button").click (function () {
 $("#callback-div").animate ({ "height": "100px",
 "width" : "200px" }, 400, function () {
 $(this).text ("This is the callback. Animation is complete.");
 });
});

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[1��]

Have a go hero – experiment with animations
Look at some of the plugins we have realized in the previous chapters and choose one or two
of them that you like the most.

Now, using what you've learned about the animate() method, try to add some animation
effects to the plugins that you have chosen. For example, if the image plugin is what you
have chosen, make an image container of a small size, and then let it grow bigger and bigger,
until it fits the image dimensions.

To obtain bouncing effects and other more advanced animation techniques, you may also
use the jQuery UI library (http://jqueryui.com)—which provides a set of functions to
deal with effects, animations, and drag and drop—or the easing plugin (http://gsgd.
co.uk/sandbox/jquery/easing/).

Don't forget to have a look at the jQuery color plugin, to obtain very cool effects with little
effort required, including background animation and a bunch of other effects that you can
have a preview of here: http://plugins.jquery.com/project/color.

Pop quiz
1. In the majority of the functions that we have seen and used in this chapter, a

callback parameter can be passed.

The callback function is executed once the animation (fade in/out, slide in/out,
animate) is complete.

However, in addition to this, the animate() method also has an option (step),
which can be specified along with callback.

Considering the following code, how many times will both functions run and what is
the difference between the two of them?

.animate({
 "opacity": "show",
 "width": "100px"
}, { complete: callback(), step: step() ;});

A. The complete function is fired every time an animation is complete; as for the
example, it will execute twice: once after changing opacity and once after the
width has been set to 100px.

As for step, it will execute once every instance of animate is called with
the same step() function passed in as an argument.

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[200]

B. The callback function will be executed once the animation is complete; the step
function is called after each step of the animation (thus twice in the example).

C. The callback function will be executed once the animation is complete; the
step function is called before the first, and after each step, of the animation
(thus three times in the example).

D. None of the above.

2. Considering the following code, what is the most significant difference between
what .parent() and .parents() do?

<div>

 First test
 Another test
 Last test

</div>

var $ps = $("li:first-child strong").parents ("ul");
var $p = $("li:first-child").parent ();

A. There is no difference in the code snippet, as the returned element is the list in
both cases.

B. Referring to the code, the $ps variable holds the ancestors of the strong tag
(span, li, ul, div, body, html), whereas the $p variable represents the
parent of the first li element (ul).

C. Referring to the code, the $p variable holds the ancestors of the strong tag
(span, li, ul, div, body, html), whereas the $ps variable represents the
parent of the first li element (ul).

D. None of the above.

3. As silly as it sounds, what does end() do?

A. Removes all event handlers previously attached to the set of
matching elements.

B. Stops the currently running animation on the matched elements.

C. Ends the most recent filtering operation in the current chain and returns the set
of matched elements to its previous state

D. None of the above.

Download from Wow! eBook <www.wowebook.com>

Chapter 11

[201]

4. What is the main difference between the functions children() and next(),
which can be used in a very similar fashion?

A. children() gets the children of each element in the set of matched
elements; next() gets all following siblings of each element in the set
of matched elements.

B. children() gets the descendants of each element in the current set of
matched elements; next() gets the immediately following sibling of each
element in the set of matched elements.

C. children() gets the immediately following sibling of each element in the set
of matched elements; next() gets the children of each element in the set of
matched elements.

D. None of the above.

5. Can items that are to be moved using the animate() method be positioned using
anything other than absolute?

A. Yes, the position of objects you wish to move acting on their left or right
properties must not be static (thus can be set to absolute, fixed, or relative).

B. Yes, the position of objects you wish to move acting on their left or right
properties must be set to either absolute or fixed.

C. No, the position of objects you wish to move, acting on their left or right
properties, must be set to absolute only.

D. None of the above.

Summary
Animation plugins are unquestionably useful, though perhaps not much in terms of mere
practical utility. However, these plugins provide an interesting addition to the average user
interface with little to no effects that we are used to seeing.

However, with the passage of time, over the years, we have witnessed an upward trend
in creating very cool interfaces and a number of scripts (developed on some of the most
widespread libraries) have been released and made available.

The majority of them are also very easy to use, even for total beginners, leading to the use
(sometimes unjustified) of them in nearly every web application.

Download from Wow! eBook <www.wowebook.com>

Animation Plugins

[202]

Most of the animation plugins we will have a chance of analyzing are aimed towards the
creation of an "alternative" behavior for those that would otherwise be quite standard
elements. For example, the sliding effect is an interesting add-on to the accordion plugin
that we have created earlier in this chapter. It adds that fancy twist, which is extremely
appreciated nowadays. People just love clicking on animated things to see how they move,
change colors, and eventually fade away.

The exact same result, in practical terms (that is, a menu with sub-links or news panes that
show after their parent element has been selected—but with no sliding motion), would still
be extremely efficient anyway. However, users wouldn't enjoy it as much as they enjoy any
smoothly moving thing—be it a box bouncing around the page or, in fact, a couple lines of
text sliding up and down.

In a totally different fashion the next chapter deals with plugins—utility plugins—thought
of as not actually being visible to visitors in the first place.

In fact, tasks like image preloading, handling cookies, or switching stylesheets are more
likely to be a tool for the developer (or the web page owner, that is) rather than a form
of entertainment for users. Users will nonetheless obtain some advantages themselves in
terms of speed and usability of the web page or site they are reading or browsing.

Download from Wow! eBook <www.wowebook.com>

12
Utility Plugins

Technically speaking, so-called utility plugins are those plugins that employ the
jQuery.pluginName functionality, thus classifying into a group of plugins
that extend the jQuery object itself and are not chainable, since they don't
return the jQuery object.

In this chapter, however, we will deal with utility plugins in the terms of their
purpose. We will cover a series of plugins whose goal is to make it easier for the
developer or page owner to access and make use of tools that they may need
for the creation of their website.

With this in mind, we will see how two rather simple plugins can be developed
so that a series of functions and methods are made available to the user. These
will eventually be used to enhance the site layout or to access, modify, and
delete data (cookies, that is).

We'll focus on the practical applications and realization techniques that we
might use in this chapter to obtain two well-structured plugins. We can easily
expand and add to these plugins so that they become even more useful after
a few lines of code are added.

Specifically, we will deal with functions and methods to:

Generate tag clouds

Handle cookies

Download from Wow! eBook <www.wowebook.com>

Utility Plugins

[204]

Generating tag clouds
A tag cloud (or word cloud) is a visual presentation of tags (or words) describing the content
of a website or document.

Tags are, usually, single words linking to the associated items (articles, pages, or other links)
whose importance is shown with either font size or color (or both). The bigger the size of the
word, the more important and utilized the word is.

This tag presentation technique was first used by the popular image hosting service Flickr,
and soon social bookmarking websites such as de.licio.us and Technorati picked up this
idea too. Other users, particularly bloggers, decided to integrate this functionality into their
websites to offer a better user experience and a quicker identification of post and topics
of interest.

A bit of theory to start with
We better start off with some theory first, as this plugin requires a bit of reasoning as far as
font size is concerned.

There are a few key points we must not overlook, namely:

1. A maximum font size should be set: The most common word will be as big as this
value, but no greater size is allowed.

2. A minimum font size needs to be set, too: The least common word will back off to
this size, but there will never be any smaller text.

Download from Wow! eBook <www.wowebook.com>

Chapter 12

[205]

3. Words shorter than three characters will be ignored: Conjunctions, articles, and
such are not so useful after all.

4. To determine the font size for each tag, we will use the following formula:

Where:

si is the display font size for the current tag.

smax and smin are, respectively, the maximum and minimum font
sizes allowed.

tagi is the number of times the current tag is repeated (tag count).

tagmax and tagmin are, respectively, the maximum and minimum
number of times tags have been repeated.

With this in mind, we can start coding our plugin.

Time for action – creating a tag cloud plugin
Our plugin will change the font size of words contained in a parent element (for example,
text contained in <div> or <p> elements) depending on the frequency that the words (tags)
repeat with.

1.	 Create a new directory, called cloud, and copy over the necessary files. A new file
named jquery.cloud.js must also be created, along with the index.html file
that we'll use to test the script, once finished.

2.	 The HTML code we start with should look similar to the following:

<!DOCTYPE html>
<html>
<head>
 <script src="jquery.js"></script>
 <script src="jquery.cloud.js"></script>
 <script>
 $(function() {
 $('p').cloud();
 });
 </script>
</head>
<body>

Download from Wow! eBook <www.wowebook.com>

Utility Plugins

[206]

 <p>
 Lorem ipsum dolor sit sit sit sit amet, consectetur
 adipiscing elit. Ut varius tempus felis, et volutpat sapien
 facilisis vitae. Duis consectetur consectetur tempor tempor
 tempor tempor tempor tempor auctor.
 </p>
</body>
</html>

3.	 As usual, our plugin structure does not change, and we can go on specifying the
options available and the standard loop cycle:

(function($) {
 $.fn.cloud = function(options) {
 var defaults = {
 minFontSizePercentage: 100,
 maxFontSizePercentage: 150
 };

 var o = $.extend(defaults, options);

 return this.each(function() {
 var e = $(this);
 // code here
 });
 };
})(jQuery);

4.	 Next, we have to find a way to read words and count how many times they appear
in the text. Their size can be determined on this value. A possible solution would
require the following steps:

Convert all letters to lowercase (or even uppercase, the point is
having them all look the same)

Delete unwanted characters and line breaks

Put words into an array

Loop through the array (skipping unwanted words—shorter than
three characters) counting how many occurrences we have for
each word

Clear the display area

Calculate the font size for each tag

Append each tag with modified size to the container

Download from Wow! eBook <www.wowebook.com>

Chapter 12

[207]

5.	 As for the first point, this is quite simple, thanks to regular expressions and built-in
functions. We will retrieve the text using the .text() method, replace characters,
and finally split items so that they can fill the txtarray. The following is the first
line of our tag cloud plugin:

var txtarray = e.text()
 .toLowerCase()
 .replace(/[,.;:]/g,'')
 .replace(/[\n\t]/g,' ')
 .split(' ');

6.	 After having our array filled with words that we still need to count, we make use of a
for loop to take care of the next few tasks.

var len = txtarray.length;

for(i = 0; i < len; i ++) {
 // skip if shorter than 3 characters or all numeric
 if(txtarray[i].length < 3) continue;

 // update tag counter: if it's the first time this tag appears,
 // it means we have to set the counter to 1 (i.e. appeared this
 // time only);
we'll increment the tag count by 1 otherwise.
 tags[txtarray[i]] = tags[txtarray[i]] ? ++tags[txtarray[i]] : 1;
}

// also, we must make sure the maximum and minimum counters are
// still truthful.
for(tag in tags) {
 if(tags[tag] > maxCount) maxCount = tags[tag];
 if(tags[tag] < minCount) minCount = tags[tag];
}

7.	 And, finally, we need to determine the right size using the above-mentioned formula
and display the tag.

e.empty();

for(tag in tags) {
 size = (o.maxFontSizePercentage - o.minFontSizePercentage)
* (tags[tag] - minCount) / (maxCount - minCount) +
o.minFontSizePercentage;

 e.append('' + tag +
 ' ');
}

Download from Wow! eBook <www.wowebook.com>

Utility Plugins

[20�]

8.	 The following is the full code for the plugin:

(function($) {
 $.fn.cloud = function(options) {
 var defaults = {
 minFontSizePercentage: 100,
 maxFontSizePercentage: 150
 };

 var o = $.extend(defaults, options);

 return this.each(function() {
 var e = $(this);

 var txtarray = e.text() // retrieve text
 .toLowerCase() // change case
 .replace(/[,.;:]/g,'') // delete unwanted
 // characters
 .replace(/[\n\t]/g,' ') // remove line
 // breaks
 .split(' '); // split words

 var i, count, tags = {}, minCount = 100000, maxCount = 1,
 len = txtarray.length;

 for(i = 0; i < len; i ++) {
 // skip if shorter than 3 characters
 if(txtarray[i].length < 3) continue;

 // update tag counter: if it's the first time this tag
 // appears,
 // it means we have to set the counter to 1 (i.e. appeared
 // this
 // time only); we'll increment the tag count by 1
 // otherwise.
 tags[txtarray[i]] = tags[txtarray[i]] ?
 ++tags[txtarray[i]] : 1;
 }

 // also, we must make sure the maximum and minimum counters
 // are still truthful.
 for (tag in tags) {
 if(tags[tag] > maxCount) maxCount = tags[tag];
 if(tags[tag] < minCount) minCount = tags[tag];
 }

Download from Wow! eBook <www.wowebook.com>

Chapter 12

[20�]

 e.empty();

 for(tag in tags) {
 size = (o.maxFontSizePercentage -
o.minFontSizePercentage) * (tags[tag] - minCount) /
 (maxCount - minCount) + o.minFontSizePercentage;

 e.append('' + tag +
' ');
 }
 });
 };
}) (jQuery);

The output is similar to the following screenshot:

What just happened?
Apart from the technical realization of the plugin, it could be interesting to understand the
reasoning that leads to the determination of the font size for the tag.

We've already seen the formula, and applied it, but why is it that way?

tagmin and tagmax represent, respectively, the number of times the least-common tag and the
most-common tag have been found.

If the value of tagi is greater than tagmin (which should happen most of the time), we
obtain a value by which we can multiply the value resulting from the difference of
font size (smax – smin).

If the number of times the current tag has appeared is equal to the value of tagmin, the
result from the multiplication will be zero. This is why we are going to add the minimum
font size value after all our operations are done.

Download from Wow! eBook <www.wowebook.com>

Utility Plugins

[210]

This series of processes also allows us to maintain a relationship between all of the values
obtained this way, as they are all calculated against some constant ratio between other
fixed variables.

It's also important to note how the font size varies depending on how many times the tag is
found in the text.

Ideally, the font size would change following a logarithmic scale, so that the least common
words would be significantly smaller than the most repeated ones, which would show in a
very big font.

Logarithmic representation, though, makes sense in larger ranges of values, where power
laws actually apply, as pointed out by some sources (http://www.echochamberproject.
com/node/247).

Have a go hero – make some improvements
Far from perfect, this plugin can't be utilized on blogs or other websites to link to archive
categories or pages, due to the fact it makes use of the .text() method to retrieve data.

This is quick and easy to change.

Also, there is a minor tweak concerning the title attribute of each word. A short, catchy
phrase can be added to inform the user about how many times a certain word has appeared
(or, how many blog posts are related to such a keyword).

An additional step would be that of sorting the list of words, based on how many times each
word has been repeated in the text.

Cookie handling
As our last (but not least, indeed!) plugin, we're about to create a simple yet extremely
useful set of functions, which will help enormously when dealing with cookies.

An important note on this plugin is that, unlike our previous attempts, we are going to
extend the jQuery object to obtain a function-like plugin that we will call with something
such as:

$.cookie_do_something();

Download from Wow! eBook <www.wowebook.com>

Chapter 12

[211]

How cookies work
Before we plunge into developing our plugin, it's important to understand how cookies
actually work. Even if their functioning is rather simple, sometimes people get confused
and try to set cookies for domains other than the one they're working on—which obviously
doesn't work.

To avoid any misunderstandings, here is a quick guide to get you started.

The two possible scenarios are that we may be working on or browsing a web page located
either on a top-level domain (domain.com) or any subdomain of the top-level domain
(sub.domain.com or www.domain.com).

As far as domain.com is concerned, we are only allowed to specify the top-level path as the
cookie path.

Any cookie set this way will be available to all the subdomains as well. This means we can
use the same cookie for sub.domain.com and domain.com.

Things get a bit different when we are working with subdomains. If we set the cookie path
to the top-level domain, cookies will be available everywhere, whereas, according to how
the first example works, if the domain path is the subdomain itself (thus, we are setting
sub.domain.com from sub.domain.com), cookies will be accessible from that subdomain
and its subdomains. We will not be able to access cookies from our domain.com.

As a last remark, if we do not specify any domain, cookies are set using the address we are
currently browsing.

Download from Wow! eBook <www.wowebook.com>

Utility Plugins

[212]

Time for action – creating a cookie plugin
To put all the good theory into practice, a simple approach to create a plugin with which we
can handle cookies follows:

1.	 Create a new directory called cookie that contains all the files we need as well as
our plugin jquery.cookie.js.

2.	 We are going to create three functions:

$.setcookie(cookieName, cookieValue, options):
Creates a cookie with specified options

$.getcookie(cookieName): Retrieves a cookie's value

$.delcookie(cookieName): Deletes a cookie using the
setcookie method and setting the cookie value to null;
$.delcookie() and $.setcookie() with value null are
equivalent

3.	 Setting cookies with JavaScript is fairly easy, maybe a bit tricky, but this page on
Quirksmode (http://www.quirksmode.org/js/cookies.html) really helps
to understand how things work.

4.	 We first make sure that options have been specified.

var defaults = {
 cookieExpires: 0,
 cookiePath: '',
 cookieDomain: '',
 cookieSecure: 0
};

var o = $.extend(defaults, options);

var name = cookieName;
var value = cookieValue;
var expires = o.cookieExpires;
var path = o.cookiePath ? '; path=' + (o.cookiePath) : '';
var domain = o.cookieDomain ? '; domain=' + (o.cookieDomain) :
'';
var secure = o.cookieSecure ? '; secure' : '';

if(expires) {
 // create date
}

Download from Wow! eBook <www.wowebook.com>

Chapter 12

[213]

5.	 We perform a check on the expires variable. If it has not been set (thus left to 0),
the cookie is set to expire at the end of the session and we do not have to modify
that value. Otherwise, we need to make a string that reports how many days the
cookie is intended to last for.

if(expires) {{
 var date = new Date();
 date.setDate(date.getDate() + expires;
 expires = '; expires=' + date.toUTCString();
}

6.	 Finally, we create the cookie.

document.cookie = name + '=' + encodeURIComponent(value) + expires
+ path + domain + secure;

7.	 We can now move on to the $.delcookie() function, which is entirely based on
$.setcookie(), and only helps in terms of usability. Here is the one-liner:

$.setcookie(cookieName, null);

8.	 Finally, $.getcookie() has to return the value of the selected cookie. We make
sure there are cookies stored, so we can avoid useless iterations, and eventually
check each cookie name against the desired name passed as an argument.

if(document.cookie) {
 var i, cookie, cookies = document.cookie.split(';');
 var len = cookies.length, nLen = cookieName.length;

 for(i = 0; i < len; i ++) {
 cookie = $.trim(cookies[i]);

 if(cookie.substring(0, nLen + 1) == (cookieName + '=')) {
 return decodeURIComponent(cookie.substring(nLen + 1));
 }
 }
}
return null;

9.	 Using the jQuery.extend method, we end up with a plugin looking similar
the following:

(function($) {
 $.extend({
 setcookie: function(cookieName, cookieValue, options) {
 var defaults = {
 cookieExpires: 0,

Download from Wow! eBook <www.wowebook.com>

Utility Plugins

[214]

 cookiePath: '',
 cookieDomain: '',
 cookieSecure: 0
 };

 var o = $.extend(defaults, options);

 var name = cookieName;
 var value = cookieValue;
 var expires = o.cookieExpires;
 var path = o.cookiePath ? '; path=' + (o.cookiePath) : '';
 var domain = o.cookieDomain ? '; domain=' +
 (o.cookieDomain) : '';
 var secure = o.cookieSecure ? '; secure' : '';

 if(expires) {
 var date = new Date();
 date.setDate(date.getDate() + expires);
 expires = '; expires=' + date.toUTCString();
 }

 document.cookie = name + '=' +
 encodeURIComponent(value) + expires + path +
 domain + secure;
 },
 getcookie: function(cookieName) {

 if(document.cookie) {
 var i, cookie, cookies = document.cookie.split(';');
 var len = cookies.length, nLen = cookieName.length;

 for(i = 0; i < len; i ++) {
 cookie = $.trim(cookies[i]);

 if(cookie.substring(0, nLen + 1) == (cookieName + '='))
 {
 return decodeURIComponent(cookie.substring(nLen + 1));
 }
 }
 }

 return null;
 },

Download from Wow! eBook <www.wowebook.com>

Chapter 12

[215]

 delcookie: function(cookieName) {
 $.setcookie(cookieName, null);
 }
 });
}) (jQuery);

10.	We can now test if it's functioning correctly by creating a few cookies, and then
retrieving their values.

$(function() {

 // set cookie. Expires at the end of the session, has no path
 // and domain has not been specified
 $.setcookie("testCookie", "test value");

 // pops up the cookie value
 alert($.getcookie("testCookie"));

 // a slightly more complete cookie
 $.setcookie("secondCookie", "test",
 { cookiePath: "/",
 cookieDomain: "domain.com"
 });

 // deletes cookies
 $.delcookie("testCookie");
 $.delcookie("secondCookie");
});

Make sure you don't run this test directly from the file system,
as cookies are set via a web server.

Download from Wow! eBook <www.wowebook.com>

Utility Plugins

[216]

What just happened?
The plugin is not very difficult in itself. The trouble might come in when we are about
to create the correct syntax to eventually set up (or read) the cookie using the available
JavaScript functions.

A few pieces of must-know information that come in handy when speaking of cookies,
are as follows:

If expires is set to any negative number, the cookie is erased immediately.

If expires is set to 0, the variable is not set and the cookie is trashed right when
the browser is closed.

Dates must be in the UTC/GMT format.

There are two needed pieces of information: the name of the cookie and its value.

As for the function that reads a cookie's value, everything should be pretty simple and
straightforward. We split document.cookie on semicolons (";") and we obtain an array
of cookies set for the current domain.

We then loop through the array until we stumble upon a cookie with the desired name.
Using the substring function, we retrieve the cookie's value and return it.

If no cookie is found, a null value is returned.

Have a go hero – make some small improvements
Very little can be added, except for some further check on types.

For example, the expires value (in days) can be used with either a number (of days) or a
date, for which we do not need to convert the number of days the cookie is valid to a date.

Also, using the typeof function, we are able to check what kind of data we are dealing with,
preventing unpleasant situations in which the expires variable equals "a few months".

Finally, what happens if the cookie name or value are not set?

Pop quiz
1. Tag clouds surely help to describe the content of a website in an easy-to-read

fashion, providing a simple way to scan text and quickly find certain topics
and/or pages.

However, there are elements of a tag cloud that do not help this identification
process.

Download from Wow! eBook <www.wowebook.com>

Chapter 12

[217]

Which are the elements that greatly help focus the attention of the user to
the tag cloud area (and on the most important keywords)?

A. Tag size: Small tags and words attract more user attention than large tags, since
the user is curious about them.

Color and font weight: Bright colored bold tags are easier to notice
as the user's attention is naturally focused on the louder items in
the cloud.

Centering: Tags positioned in the middle of the tags are more likely to
draw attention than those placed near the borders.

B. Tag size: Large tags and words attract more user attention than small tags.

Centering: Tags positioned in the middle of the tags are more likely
to draw attention than those placed near the borders.

Number of characters: The longer the tag, the more the user is likely
to spend time reading the word. Often the user stops scanning the
cloud at this point.

C. Centering: Tags positioned in the middle of the tags are more likely to draw
attention than those placed near the borders.

Number of characters: The longer the tag, the more the user is likely to
spend time reading the word. Often the user stops scanning the cloud
at this point.

D. Tag size: Large tags and words attract more user attention than small tags.

Color and font weight: Bright colored bold tags are easier to be noticed
as the user's attention is naturally focused on the louder items in
the cloud.

Centering: Tags positioned in the middle of the tag are more likely to
draw attention than those placed near the borders.

Number of characters: The longer the tag, the more the user is likely to
spend time reading the word. Often the user stops scanning the cloud
at this point.

2. Speaking of relatively small frequencies, which directly correspond to the number of
blog posts or articles or pages dealing with a certain topic, how is font size for words
belonging to the tag cloud determined?

A. While for (very) small frequencies a simple, direct assignment of a number from
one (or 100), being the minimum font size—corresponding to word that appears
one or one times—to the highest frequency, also corresponding to the biggest
font size, is possible, for larger values a scaling should be performed, using a
formula similar to the one we have mentioned earlier.

Download from Wow! eBook <www.wowebook.com>

Utility Plugins

[21�]

B. A scaling should be always made, no matter the frequency of tags in the
website or page, as it allows for a more precise handling of data involved
in the calculation.

C. Scaling should be made for small frequencies only, as it's necessary that, with
larger values, the relationship between the tags is kept unmodified. Doing
otherwise would result in weird differences in size for very similar tag values.

D. None of the above.

3. We all talk a lot about cookies, and we are always concerned about what cookies do
and the possible security issues.

We even developed a plugin to easily create, read, and delete cookies.
But what actually are cookies and what's their main purpose?

A. A cookie is a text string, stored by either the web browser or the website, which
contains bits of information useful to access or to store data from a website.
Cookies can be encrypted for better security and privacy protection purposes.

B. A cookie is an encrypted text string, stored by either the web browser or the
website, which contains bits of information useful to access or to store data
from a website.

C. A cookie is a text string, stored by the web browser, which contains bits of
information useful to access or to store data from a website.

D. None of the above.

4. Creating a plugin to store cookies was not difficult at all, except for the way a cookie
must be formatted to be valid.

What does a cookie, with all the possible parameters, look like to be sure it
will be accepted?

A. cookieName=cookieValue;expires=Fri, 19 Aug 2011 21:22:23
UTC;path=/;domain=example.com;secure=yes

B. cookieName=cookieValue; expires=Fri, 19 Aug 2011 21:22:23
UTC; path=/; domain=example.com; secure

C. cookieName=cookieValue; expires=Fri, 19 Aug 2011 21:22:23
UTC; path=/; domain=example.com; secure=yes

D. None of the above.

Download from Wow! eBook <www.wowebook.com>

Chapter 12

[21�]

Summary
We eventually realized two plugins that can be classified as utility plugins, which thus help in
the development of a website, either enhancing the frontend or managing backend tasks.

Of course, these plugins were just two simple solutions that fitted the category, as there
would be a lot more concepts to take into consideration and discuss. A great starting
point is, as usual, the jQuery website, which has a great listing of various utility plugins
(http://plugins.jquery.com/project/Plugins/category/57) that provide
some sort of service to the end user.

They range from multiple selection tools to binding functions and data handling, as well
as some functions that integrate with the built-in methods in an attempt to extend the
functionalities the core jQuery library provides.

As reported earlier in this chapter, the majority of these utilities are developed extending the
jQuery object itself, thus not allowing chainability but offering the possibility to call the utility
function by using as a simple syntax as a normal (non-jQuery) function.

In a totally different fashion, the next chapter, which is also the last one, will present you
with a list of ten of the most popular and useful jQuery plugins. For each of them, a brief
description and an overview of their functioning will be made available.

As a bonus, examples of use and integration with other scripts and/or jQuery plugins will be
provided and explained. The next chapter will attempt to make a short handbook that you
can use whenever you feel you need to check on something related to the jQuery plugins we
deal with.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

13
Top jQuery Plugins

A quick look at some pages on the official jQuery website is enough to
understand that there are a lot of jQuery plugins out there. Many plugins even
do the same thing, but in different ways; and some do the same thing in the
very same way.

But, apart from the inevitable "clones", one may wonder "which are the plugins
that I really need or are worth taking a look at?".

According to the official website, the plugins in the following selection are the
most popular and appreciated. For each of them, we will analyze a few points
(including a brief application section), and see some paragraphs that sum up
the essential documentation for the plugin along with some examples.

With many thanks to their authors, who provided the jQuery community with such great
plugins for us to use at no cost, the ten plugins we are going to analyze are:

Typesearch by Lim Chee Aun

JSON plugin by Giraldo Rosales

notNow by Sergey Vasilianskiy

Webcam by David McNamara

Quovolver by Sebastian Nitu

ScrollToElement by Lauri Huovila and Neovica Oy

PassRoids by Patrick Keefe

Virtual Keyboard Widget by Jeremy Satterfield

Sliding Doors by Frank DeRosa

idleTimer by Paul Irish

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[222]

Typesearch
Information regarding this plugin can be found at the following links:

Project page http://plugins.jquery.com/project/typesearch

Home page http://code.google.com/p/typesearch

Download link http://giulio.hewle.com/gstuff/jquery/typesearch/

Online demonstration http://giulio.hewle.com/gstuff/jquery/typesearch/
demo.html

Description
The idea behind Typesearch, sparked by the desire of Lim Chee Aun (the author of the
plugin) to have a cross-browser OSX-style searchbox, is as simple as it is successful.

This plugin implements Safari's searchbar using <input type="search">, also
mimics its functionality and look on other browser as well.

The author, inspired by the jQuery implementation of a OSX-like searchbox (http://www.
brandspankingnew.net/archive/2005/08/adding_an_os_x.html), decided to turn
the idea into a jQuery plugin, which is easier to use and far less complicated than writing the
same code over and over again for each page we need the search box for.

Needless to say, very few would call the OSX interface "ugly" or even "unattractive". Hence
there is a quick and consistent increase in attention towards this tiny but handy script. No
matter what, it will always draws interest due to its undeniably good looks and simplicity of
use and implementation.

Although available for other JavaScript frameworks such as MooTools, Typesearch provides
the best results as a jQuery plugin, giving the user almost full control over its operation
and results.

The following image represents what the plugin actually does. As you can see, the two
search bars have a OSX look:

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[223]

Synopsis
The Typesearch plugin allows for an easy-to-use approach and a few lines of code are enough
to get it working. The following code represents how functions should be set up and called:

HTML:

<input type="text" class="search" value="" />

JavaScript:

$('.search').typeSearch();

Options:

Name Type Default Description

results int 0 The results attribute is set to this value

placeholder string 'Search...' Text to display instead of empty text box

autosave string '' autosave attribute is set to this value

Time for action – obtaining an OSX-like search bar
with the Typesearch plugin

To better understand how the plugin works, we are now going to try it out and see how we
can obtain an OSX-looking search bar with little effort.

1.	 As we've already seen, the basic code to make the plugin work is really simple.

If we haven't applied styling nor have tried to set any options, our code for the web
page will look similar to the following:

<html>
 <head>
 <link rel="stylesheet" type="text/css" media="screen"
 href="css/typesearch.css" />
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript" src="jquery.typesearch.js">
 </script>

 <script type="text/javascript">
 $(document).ready(function() {
 $("#searchbox").typeSearch();
 });
 </script>
 </head>

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[224]

 <body>
 <p>Search box below</p>
 <input type="text" id="searchbox" value="" />

 </body>
</html>

2.	 The previous code would have no other effect than activating the plugin with default
options (since we passed no arguments) and styling the selected search bar to look
like the ones we've seen in the previous image.

3.	 If we want to show 10 results and enable autosave, we will need to modify the code
as follows:

<script type="text/javascript">
 $(document).ready(function() {
 $("#searchbox").typeSearch({
 results: 10,
 autosave: 'mysearch-id' });
 });
</script>

4.	 The above code, which only works for Safari, as it's the only browser that currently
supports such attributes, displays a list of the ten recent searches and shares the list
for all the search boxes that have the same autosave attribute.

What just happened?
Even though the functioning of the plugin is straightforward, we can get a little confused
when dealing with options that actually work with certain browsers only.

In fact, there is no browser other than Safari supporting the autosave feature. It is then
needless to say this plugin finds major application as a way to make a search bar look
the same in every browser, but does not act in the same way for each of them.

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[225]

Also, make sure you don't mess up file paths! JavaScript files can be moved with no
problems, but references to the images directory are contained in the CSS file, which
should remain in the css subdirectory.

You can obviously move the stylesheet or even images, but all paths must be changed—and
it's quite time consuming!

Final thoughts
P Cross-browser and easy to use

P Nice looking, as most OSX-like things are

O	Sadly, no documentation available. Even though the plugin is so simple, it wouldn't
have hurt at all.

O	Difficult to download as there is no packaged version on the official page and the
user should have Subversion installed to check out the latest revision.

O	Some code is just plain JavaScript, and some parts can be implemented in jQuery, the
final result being a jQuery plugin. The truth is that some JavaScript functions come in
handy sometimes, and often run more quickly than their jQuery counterparts.

JSON plugin
Information regarding this plugin can be found at the following links:

Project page http://blog.nitrogenlabs.com/2009/03/json-plugin-
for-jquery.html

Home page http://blog.nitrogenlabs.com/2009/03/json-plugin-
for-jquery.html

Download link http://giulio.hewle.com/gstuff/jquery/labs_json/

Online demonstration http://giulio.hewle.com/gstuff/jquery/labs_json/
demo.html

Description
This plugin, created by Giraldo Rosales, quickly converts JavaScript objects to JSON strings
and JSON strings back to objects.

It is particularly useful whenever we are about to pass data to other applications, so that
we can count on a certain way in which all the information will be transferred. We need to
develop the software necessary to decode (or encode) the received messages with absolute
confidence that the standard is already set and shared between the two programs.

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[226]

Synopsis
This plugin makes the exchange of JSON strings extremely easy, as is the following code that
is needed to set up and call its functions:

 // ENCODE
$.json.encode(value[, replacer[, space]])

// DECODE
$.json.decode(text[, reviver]);

Arguments (encode):

Name Type Description

value obj Object to be encoded to JSON string

replacer function Function to be called for replacing key-value pairs

space int/string Number of spaces to indent the values with

Arguments (decode):

Name Type Description

text string JSON string to be converted back into object

reviver function Function to be optionally called at the end

Time for action – encoding and decoding JSON strings
Converting values to and from JSON strings, with just a few lines of code, is rather simple.
Here is how we can approach the problem:

1.	 We can encode objects into strings using the encode function, after we have
successfully created an object.

var obj = {};
obj.name = "Test JSON";
obj.type = "test";

$.json.encode(obj);

2.	 We then have the possibility to convert the encoded string back to an object,
making use of the decode function.

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[227]

3.	 To test the script, we will show a message box with both the results, right after the
conversions are made:

<html>
<head>
 <script src="jquery.js" type="text/javascript"></script>
 <script src="labs_json.js" type="text/javascript"></script>
 <script type="text/javascript">
 $(document).ready(function() {
 var obj = {};
 obj.name = "Test JSON";
 obj.type = "test";

 alert("encoded string: " + $.json.encode(obj) +
 "\n\ndecoded object: " +
 $.json.decode('{"property":"my value",
 "second":"third"}').toSource());());
 });
 </script>
</head>
<body></body>
</html>

What just happened?
To better understand what we've just learned to do, we might want to know a bit more
about the JSON standard.

JSON, acronym for JavaScript Object Notation, is a standard designed for exchanging data in
a human-readable form.

It basically represents simple sets of associative arrays and data structures of key-value pairs
that are, thanks to the JSON format, language independent and can be parsed by a variety
of software developed, available for most programming languages.

JSON strings are thus very useful when we need to pass data to (or receive data from) other
applications, typically in a server-web application transaction in place of XML.

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[22�]

Final thoughts
P A quick way to handle JSON strings and objects

P Some interesting options to make use of

O	Very poorly documented

notNow
Information regarding this plugin can be found at the following links:

Project page http://plugins.jquery.com/project/notNow

Home page None

Download link http://plugins.jquery.com/node/10023/release

Online demonstration http://giulio.hewle.com/gstuff/jquery/notNow/
demo.html

Description
notNow is a jQuery plugin developed by Sergey Vasilianskiy that allows postponing
a certain operation (function), for a certain period, once.

Synopsis
The function made available by the plugin can be called as follows:

$.notNow(timeOut, func);

Arguments:

Name Type Description

timeOut int Time out period in milliseconds

func function Function to be executed after timeout

Time for action – postponing a function using the notNow plugin
A sample application of the plugin follows. This should also make clear what the differences
are compared with the built-in setTimeout() function.

1.	 From the very basic documentation that's provided, here is a sample application of
this simple plugin that actually finds many applications in everyday usage:

<html>

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[22�]

 <head>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript"
 src="jquery.notnow.js"></script>
 <script type="text/javascript">
 $(document).ready(function() {
 var myFunc = function() {
 // do something
 }

 $.notNow(5000, myFunc);
 });
 </script>
 </head>
 <body></body>
</html>

2.	 Obviously, we can also use the anonymous function and handle everything without
the need to define another named function.

$.notNow(2000, function() {
 // load image in 2 sec;
 var image = new Image();
 image.src = 'image.png';
});

What just happened?
The notNow plugin is, of course, extremely simple in terms of usage; but it allows for quite
a lot of different applications when using it in the real world.

A common problem we may face in an ordinary task such as loading a web page is, in fact,
executing a function, or even a set of several functions, after some time.

It's true that, making use of the callback facility jQuery provides, we can chain functions
and methods so that one is run right after the previous function has finished. However,
with a plugin that postpones this kind of activity and provides a quicker way to access the
setTimeout() utility, everything is more nicely done.

Final thoughts
P Very handy in many situations

P Lots of possible uses

O Once again, no documentation is available, but the plugin is so simple that
everybody should be able to understand how it works.

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[230]

Webcam
Information regarding this plugin can be found at the following links:

Project page http://mackers.com/projects/jquery.webcam/
examples/basic/basic.htm

Home page http://mackers.com/rant/2010/03/09/571-jquery-
webcam

Download link http://mackers.com/projects/jquery.webcam/
examples/basic/

Online demonstration http://mackers.com/projects/jquery.webcam/
examples/basic/basic.htm

Description
This plugin was written by David McNamara and allows jQuery to read data from a user's
webcam or other video capture device.

Until browsers support native webcam capture, a Flash SWF is used for the actual capture.

The plugin can optionally prompt the user to allow Flash access to the webcam and writes
the video to a canvas element.

It also supports callbacks and filters.

The image below shows the canvas element with a green filter applied. This is pretty much
what the plugin will look like right before the webcam is turned on.

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[231]

Synopsis
The plugin requires some additional code in order to produce the desired results, as a so-
called 'canvas', in which the captured images will be displayed, is necessary.

HTML:

<canvas id="canvas"></canvas>

JavaScript:

// INIT
$.webcam.init(canvas[, flashcontainer[, properties]]);

// CALLBACKS ON IMAGE DATA
$.webcam.addCallback(function, interval);

// FILTERS
$.webcam.addFilter(function);

// START/STOP CAPTURE
$.webcam.startCapture();
$.webcam.stopCapture();

Arguments (init):

Name Type Description

canvas string Selector for the canvas element

flashcontainer string Selector for the Flash container

properties obj Options object

Properties

Name Type Description

width int Element width

height int Element height

interval int Update interval

dialogBody string Text displayed on dialog element

dialogProperties obj Dialog properties object

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[232]

Time for action – setting up and using the webcam plugin
In order to make the plugin work as it's intended to, we first have to follow a series of steps
to set up the script.

1.	 Firstly, we have to initialize the webcam object to an element of our choice, and
optionally add a callback function to the image data.

$.webcam.init($('#canvas'));

2.	 The webcam can now start capture, which we can interrupt at any moment. We
will bind the start and stop functions to buttons that we can easily manage and
conveniently enable or disable.

$(document).ready(function() {
 $.webcam.init($('#canvas'));

 $("button#start").click(function() {
 $.webcam.startCapture();
 $(this).attr("disabled", true);
 $("#stop").attr("disabled", false);
 });

 $("button#stop").click(function() {
 $.webcam.stopCapture();
 $(this).attr("disabled", true);
 $("#start").attr("disabled", false);
 });
});

What just happened?
Setting up the plugin is one of the most important things to do in order to obtain good
results, especially if the plugin in question provides lots of different ways to tweak and
customize its functioning and appearance.

Required files for the plugin to work are:

jquerywebcamhelper.swf (http://github.com/mackers/jquery.webcam/
tree/master/swf/)

jQuery.flash plugin (http://jquery.lukelutman.com/plugins/flash/)

jQuery UI Dialog element and a theme (for the optional user prompt), which can be
downloaded from http://jqueryui.com

Provided all the above files have been retrieved, an interesting feature the webcam plugin
offers is filters.

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[233]

Filters can be added though the addFilter method, which takes one argument (the filter
object) and sets the filter color to the one we specified in RGB notation.

The filter object that we need to pass has the standard r (red), g (green), and b (blue)
properties we can set according to our liking.

We can create and add a filter using this template code.

var filter = function(px) {
 px.red = 255;
 px.green = 255;
 px.blue = 255;

 return px;
};

$.webcam.addFilter(filter);

Final thoughts
P Interesting idea

P Great realization with many options and possibilities

O	No extensive documentation provided

Have a go hero – creating a green filter
Now that you know everything you need to know about filters, create a new page in which
the webcam plugin will apply a green filter to the image.

This means only the green value must be set to 255, whereas the other values may, at your
wish, either be set to 0 or remain untouched.

Quovolver
Information regarding this plugin can be found at the following links:

Project page http://plugins.jquery.com/project/Quovolver

Home page http://sandbox.sebnitu.com/jquery/quovolver/

Download link http://sandbox.sebnitu.com/jquery/quovolver/

Online demonstration http://sandbox.sebnitu.com/jquery/quovolver/

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[234]

Description
Quovolver is a simple extension for jQuery written by Sebastian Nitu that takes a group of
quotes and displays them on your page in an elegant way.

The plugin demonstration from the official website is as follows:

Synopsis
The plugin needs to be activated on a selection of elements (the quotes):

$('element').quovolver([speed[, delay]]);

Arguments:

Name Type Default Description

speed int 500 Execution speed in milliseconds

delay int 6000 Delay between quotes in milliseconds

Time for action – putting Quovolver to work
Very easy to use, the first step consists in actually creating the group of quotes we'd like to
cycle through.

1.	 We'll wrap the paragraphs into blockquote elements in order to obtain a standard
HTML representation of quotations.

<html>
<head>
 <script src="jquery.js" type="text/javascript"></script>

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[235]

 <script src="jquery.quovolver.js" type="text/javascript">
 </script>
 <script type="text/javascript">
 $(document).ready(function() {
 // code
 });
 </script>
</head>
<body>
 <blockquote>
 <p>
 This is a simple, short quote.
 </p>
 <cite>Author</cite>
 </blockquote>

 <blockquote>
 <p>
 A longer note is coming next. A longer note is coming next.
 A longer note is coming next.
 </p>
 <cite>Another author</cite>
 </blockquote>

 <blockquote>
 <p>
 This would be the longest quote of the set, with some text
 repeated over and over. This would be the longest quote of
 the set, with some text repeated over and over. This would
 be the longest quote of the set, with some text repeated
 over and over. This would be the longest quote of the set,
 with some text repeated over and over.
 </p>
 <cite>Last author</cite>
 </blockquote>
</body>
</html>

2.	 We can now add the JavaScript code to make the plugin work, which only requires a
simple line, as follows:

$("blockquote").quovolver(200, 10000);

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[236]

3.	 The first quote is then displayed for 10 seconds, then the animation (lasting only
200ms) takes place, and then the second quotation block appears.

This happens until all the quotes have been displayed for ten seconds each, at which
point the cycle starts over and the first quotation is displayed again.

What just happened?
Even though this plugin was originally thought up as a method to cycle through a set of
quotations the principles lying behind Quovolver make it easy to apply the same plugin to
other elements in a web page.

Instead of activating its main functionality by selecting a blockquote element, we could, in
fact use the plugin to cycle through other kinds of media—such as images—to set up a very
simple image gallery for our website.

Final thoughts
P Easy to use

P Some documentation (mostly examples) available

ScrollToElement
Information regarding this plugin can be found at the following links:

Download link http://giulio.hewle.com/gstuff/jquery/js/

Online demonstration http://giulio.hewle.com/gstuff/jquery/
scrollToElement/demo.html

Description
The ScrollToElement plugin has been developed by Lauri Huovila and Neovica Oy.

This plugin allows you to scroll the current page; the selected element is shown at
the top-left corner of the browser. By default, scrolling is smooth and takes 750ms.

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[237]

Synopsis
The plugin provides two functions, which need to be called in different ways and with
different arguments.

// SCROLL TO SELECTED ELEMENT
$('#element').scrollTo([speed]);

// SCROLL TO ELEMENT
$.scrollToElement(element[, speed]);

Arguments:

Name Type Default Description

speed int/string 'normal' Animation speed (text or number in ms)

element object Element to scroll to

Time for action – different ways of scrolling
The plugin provides two ways to scroll to an element, which we will analyze.

1.	 We can either select an element using jQuery built-in selectors and then scroll to it
(calling the .scrollTo() method) or, using the scrollToElement() function,
scroll to the selected element passed as an argument.

<html>
 <head>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript"
 src="jquery.scrolltoelement.js"></script>
 <script type="text/javascript">
 $(document).ready(function() {
 // code
 });
 </script>
 </head>
 <body>
 <button id="scroll1">scrollToElement</button>

 <button id="scroll2">scrollTo</button>

 <!-- page should be long enough to allow for scroll
 add
 tags as needed -->

 <p id="scrolltarget">scroll target is here</p>
 </body>
</html>

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[23�]

2.	 We can then bind the two buttons to a scrolling motion—the same result through a
different process.

For example, one of the two buttons can be bound to scrolling with the following
code, which results in the function being called. The target element must be
specified too.

$("button#scroll1").click(function() {
 $.scrollToElement($('#scrolltarget'));
});

Alternatively, the method version can be used, and the code would read:

$("button#scroll2").click(function() {
 $('#scrolltarget').scrollTo();
});

What just happened?
This plugin is of a disarming simplicity, yet it also turns out to be extremely useful for some
user experience tweaks to a web page.

Many website designers are used to adding a link to the top of the page (in the footer) or a
link to the content (in the header).

In both cases, the "jump" is clear and noticeable; some may dislike this behavior.

On the other hand, using the ScrollToElement plugin, a simple animation can be set up so
that the reaching of a determined element is so smooth that everybody enjoys it—and might
possibly do it again just to check it out.

Final thoughts
P Smooth animation

P Great user experience add on

O	Poor documentation

Have a go hero – proceed a step further
Even though it's not much of a challenge, it's always useful to familiarize yourself and get
used to how the plugin works.

In this case, the only other argument that can be passed is the animation length (speed).
Everybody can pass another argument to a function. But this is not the most interesting
feature to toy around with.

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[23�]

Instead, try to see what situations the method and function versions are best suited for. In
what circumstances are methods more useful than functions? What about this plugin?

PassRoids
Information regarding this plugin can be found at the following links:

Project page http://plugins.jquery.com/project/PassRoids

Home page http://plugins.jquery.com/project/PassRoids

Download link http://plugins.jquery.com/node/9059/release

Online demonstration http://giulio.hewle.com/gstuff/jquery/
PassRoids/demo.html

Description
The PassRoids jQuery plugin was designed by Patrick Keefe to allow simple
integration of password strength measurement and verification and display it in
a simple method to the end user. Installation requires minimal js and css code and
can be setup in a matter of minutes.

The script is only ~4K and has been tested and runs on IE6+, Firefox, Safari
and Opera.

A sample PassRoids application is seen in the following screenshot, which shows form and
plugin element styling. The button is disabled to prevent the user from submitting data:

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[240]

Synopsis
A simple line of code is enough to make the plugin work, but some options allow for an easy
customization of the plugin functioning.

$('element').passroids(options);

Options:

Name Type Default Description

main string '#password' Selector for the field

verify string null Selector for the confirmation field

button string null Selector for the button

minimum int 0 Minimum password strength required

Time for action – using the plugin
A sample application of the PassRoids plugin is shown in the following example, which gives
a useful hint for those interested in an quick and easy way to check field values.

1.	 The basic layout for the page on which the plugin will work should look similar
to the following:

<html>
<head>
 <script src="jquery.js" type="text/javascript"></script>
 <script src="jquery.passroids.js" type="text/javascript">
 </script>
 <script type="text/javascript">
 $(document).ready (function () {
 // code
 });
 </script>
</head>
<body>
 <form>
 Password: <input type="password" name="pass_test" value=""
 id="pass_test" />
 Password (again): <input type="password"
 name="pass_test_verify" value="" id="pass_test_verify" />
 <input type="submit" name="pass_test_submit"
 value="Change password" id="pass_test_submit" />
 </form>
</body>
</html>

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[241]

2.	 It is important to note that some elements must be present in order to use the
plugin to its best. These elements are the password verification field (#pass_test_
verify) and the submit button (#pass_test_submit). Of course, a password
field (#pass_test) is needed to check the text input.

3.	 The plugin must be called on the document itself, and options can be passed all at
once using the options object.

$(document).passroids ({ main: "#pass_test",
 verify: "#pass_test_verify",
 button: "#pass_test_submit",
 minimum: 10
 });

4.	 Our form will then look like the one in the following image:

Once we type in the password, the script will either enable the button or keep it
disabled to prevent the form submission.

Also, a message reporting the password strength will be displayed.

What just happened?
A very strange thing we can notice is how the plugin needs to be called for it to
work correctly.

The default value for main makes the plugin work by default on a #password field, and
not on the field(s) that are selected using jQuery selectors and on which we actually expect
the script to be used.

Needless to say, this unconventional approach makes it almost essential for us to pass
options even for basic usage; and obviously makes everything worse and more difficult
to use, resulting in an overall less user-friendly approach.

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[242]

We can also style the plugin output, knowing that:

div#psr_score contains strength information

div#psr_verify is used to display whether passwords match

div#psr_strength_notice shows password strength warnings

Moreover, the score level (Weak, Medium, and so on) is wrapped into a span element whose
class is psr_0 for Weak, psr_1 for Medium, and so on.

Password strength is expressed by a number, which is calculated as the sum of all of the
points obtained by meeting the following criteria:

 length

4 or less: 3

5-7: 6

8-15: 12

16+: 18

letters

At least one lowercase: 1

At least one uppercase: 5

numbers

At least one: 5

At least three: 5

special characters

At least one: 5

At least two: 5

combos

Uppercase and lowercase letters: 4

Letters and numbers: 4

Letters, numbers, and special characters: 7

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[243]

Final thoughts
P Cross-browser

P Extremely lightweight script

O No documentation available; a quick look at the code helps, though

O Could have been easier to use

Virtual Keyboard Widget
Information regarding this plugin can be found at the following links.

Project page http://plugins.jquery.com/project/virtual_keyboard

Home page http://snipplr.com/view/21577/virtual-keyboard-widget/

Download link http://giulio.hewle.com/gstuff/jquery/virtual-
keyboard/

Online
demonstration

http://giulio.hewle.com/gstuff/jquery/virtual-
keyboard/demo.html

The following image represents what the virtual keyboard looks like (QWERTY layout, but this
can be changed with ease):

Description
An on-screen virtual keyboard embedded within the browser window, which will
pop up when a specified entry field is focused. The user can then type and preview
their input before Accepting or Canceling.

Developed by Jeremy Satterfield.

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[244]

Synopsis
Basic code to call the method and provide options in the right way follows:

$('#input').keyboard(options);

Options:

Name Type Default Description

layout string 'qwerty' Specify which keyboard layout to use

customLayout array Specify a custom layout (array of arrays)

Layout values accepted:

Name Description

qwerty Standard QWERTY layout (default)

dvorak Simplified DVORAK layout

alpha Alphabetical layout

num Numerical (ten-keys) layout

custom Uses custom layout defined by customLayout

Special/"Action" keys:

Name Description

{accept} Updates element value and closes keyboard

{bksp} Backspace

{cancel} Clears changes and closes keyboard

{dec} Decimal for numeric entry, only allows one decimal

{neg} Negative for numeric entry

{return} Return/New Line

{shift} Shift/Caps lock

{sp:#} Adds # blank spaces (1 ~ width of one key)

{space} Space bar

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[245]

Time for action – using the virtual keyboard plugin
Creating an on-screen keyboard might sound as a rather difficult task, but thanks to this
plugin it's as easy as writing a couple of lines of code.

1.	 Basic usage is really straightforward. Note that jQuery UI (version 1.7) is required for
this plugin to work. It does not seem to work with versions 1.8 and higher. You can
get it at http://jqueryui.com.

<html>
<head>
 <script src="jquery.js" type="text/javascript"></script>
 <script src="jquery-ui.js" type="text/javascript"></script>
 <script src="jquery.keyboard.js" type="text/javascript">
 </script>
 <script type="text/javascript">
 $(document).ready(function() {
 $('input[type=password]').keyboard ({
 layout:"qwerty"
 });
 });
 </script>
</head>
<body>
 <input type="password" name="pass" value="" id="pass" />
</body>
</html>

2.	 We then add some CSS code (that comes together with the plugin), to make the
keyboard look better and spaces be of the exact width of keys.

 <style>
 .ui-keyboard{ position: absolute; z-index: 16000;}
 .ui-keyboard-button{height: 2em; width: 2em; margin: .1em;}
 .ui-keyboard-actionkey{width: 4em;}
 .ui-keyboard-space{width: 15em;}
 .ui-keyboard-preview{width: 100%; text-align: left;}
 </style>

3.	 To change the layout, a couple of additional lines can be added, defining our
custom layout:

$('input[type=password]').keyboard({
 layout:"custom",
 customLayout:
 [["q w e r t y {bksp}","Q W E R T Y {bksp}"],
 ["s a m p l e {shift}","S A M P L E {shift}"],
 ["{accept} {space} {cancel}","{accept} {space} {cancel}"]]
});

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[246]

4.	 The final result is a virtual keyboard with a definitely weird but customized layout:

What just happened?
Note that the CSS used in the examples is not required per se, but helps to make the entire
virtual keyboard more consistent in its design.

As you have surely noticed, the customLayout option is really important in the creation of
a custom keyboard layout. To clarify a little about this entity, we must remember that:

It is an array of arrays

Each internal array is a new keyboard row

Each internal array can contain either one or two string elements (lowercase and
uppercase respectively)

Each string element must have each character or key separated by a space

Final thoughts
P Simple straightforward plugin of everyday usage for some

P Very customizable

P There is some documentation written as comments in the plugin file

O	No ready-to-download package

O	Requires jQuery UI

Sliding Doors
Information regarding this plugin can be found at the following links:

Project page http://plugins.jquery.com/project/slidingdoors

Home page http://surreal-dreams.com/jquery-plugins-and-
stuff/slidingdoors-plugin/

Download link http://surreal-dreams.com/jquery-plugins-and-
stuff/slidingdoors-plugin/

Online demonstration http://surreal-dreams.com/jquery-plugins-and-
stuff/slidingdoors-plugin/

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[247]

Description
This plugin, written by Frank DeRosa, will take a selected image or set of images
and replace it with a container with two halves, which slide open and turn
translucent on mouseover. The open halves reveal the alt tag text of the original
image. Any links on the image are preserved along with their classes, and a
configurable text label is added to the alt text. You can configure the time to open
the "doors", close them, the opacity, the text indicating there's a link, and how far
open the doors go (as a percentage).

There is one known bug, which is that the original link is not removed and makes
the entire structure a clickable link.

The image needs to have a set size or some browsers won't be able to figure out
the size. Also, please ensure that your image is not scaled in HTML – the script isn't
able to scale back the halves to match the original so it will look strange.

The screenshot represents how the image will look, after the two halves have been moved
and the underlying content is visible:

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[24�]

Synopsis
JavaScript:

$('element').slidingDoor (options);

Options:

Name Type Default Description

closeSpeed int 500 Time for the doors to close, in ms

linkText string 'click here' If there's a link, this text appears

opacity float 0.2 Opacity at the end of the animation

openSpeed int 200 Time for the doors to open, in ms

openWidth float 0.9 Percentage of total image width the doors will slide

Time for action – creating a sliding door
The sliding door technique, though highly effective and relatively difficult in its realization, is
surprisingly easy to obtain using this plugin.

1.	 For example, the following code changes the open and close times and modifies the
distance the "doors" slide, making sure the two parts of the image do not become
extremely transparent at the end of the animation:

$(document).ready (function () {
 $('img').slidingDoor ({
 opacity : .80,
 openWidth: .2,
 openSpeed: 100,
 closeSpeed: 100
 });
});

2.	 Now the only thing we need to do in order to make the plugin work, is to add an
image to the page.

<html>
<head>
 <script src="jquery.js" type="text/javascript"></script>
 <script src="jquery.slidingdoors.js" type="text/javascript">
 </script>
 <script type="text/javascript">
 $(document).ready (function () {
 $('img').slidingDoor ({
 opacity : .80,

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[24�]

 openWidth: .2,
 openSpeed: 100,
 closeSpeed: 100
 });
 });
 </script>
</head>
<body style="text-align: center">
 <>
</body>
</html>

3.	 This is what we will see whenever we hover the image with our mouse pointer. The
image looks like it has been split into two halves, and it actually does get split with a
smooth animation lasting for a defined period of time.

What just happened?
When dealing with this plugin, an important thing we should bear in mind is the different use
of the term "speed" plugin authors make in their works.

The word "speed" is generally used to identify the speed at which the plugin executes its
task. In this case, however, both openSpeed and closeSpeed actually represent the time
the plugin needs to open and close the sliding door.

Final thoughts
P Incredible results with minimum code

P Some documentation available; more is supposed to "come soon"

O Minor improvements to code and final result still possible

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[250]

idleTimer
Information regarding this plugin can be found at the following links:

Project page http://plugins.jquery.com/project/idleTimer

Home page http://paulirish.com/2009/jquery-idletimer-
plugin/

Download link http://github.com/paulirish/jquery-idletimer/

Online demonstration http://paulirish.com/demo/idle-timer

Description
Paul Irish states there are a few cases where you want to know if the user is idle. Namely:

You want to preload more assets

You want to grab their attention to pull them back

You want to close their banking session after 5 minutes of inactivity. (Jerk!)

You want the site to sneak off the screen and see if they notice ;-)

The plugin has the following characteristics:

Leveraged event namespaces for easy unbinding

Considered mousewheel as activity, in addition to keyboard and mouse movement

Multiple timers support

A simple way is to use the idleTimer plugin to check if the user is active on a web page or a
specific element.

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[251]

Synopsis
This is how we call the plugin on various elements:

// START TIMER
$(element).idleTimer([timeout]);

// ELAPSED TIME
$(element).idleTimer('getElapsedTime');

// STOP TIMER
$(element).idleTimer('destroy');

// USER ACTIVITY ('idle' or 'active')
$.data(element,'idleTimer')

Options:

Name Type Default Description

timeout int 30000 Timeout in milliseconds

Time for action – timing idle users
We can set the idle timer so that it checks whether the user is active on the entire document
element (that is, the user moves the mouse) or not.

1.	 The first step is to set a timeout variable to which we can refer to, and then bind
the functions we chose to the document element.

var timeout = 10000;

$(document).bind("idle.idleTimer", function() {
 // user is idle
});

$(document).bind("active.idleTimer", function() {
 // user is active
});

2.	 When the user is active (active.idleTimer) we may want to let everybody know.
Obviously the same applies to the idle time (idle.idleTimer):

$(document).bind("idle.idleTimer", function() {
 $("#status").html("User is idle").css("backgroundColor",
 "silver");
});

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[252]

$(document).bind("active.idleTimer", function() {
 $("#status").html("User is active").css("backgroundColor",
 "yellow");
});

3.	 Once everything has been correctly set up, we are ready to call the $.idleTimer()
function and let the plugin do its job:

$.idleTimer(timeout);

What just happened?
Note that the preceding code is for Version 0.9 and above only.

If you're using the old $.idleTimer API, you should not do $(document).
idleTimer(...).

Element-bound timers will only watch for events inside of them. You may just
want page-level activity, in which case you may set up your timers on document,
document.documentElement, and document.body.

Final thoughts
P Useful for some web applications

P Some examples to refer to

O Might be tricky to make the best use of it at first

Have a go hero – use multiple timers
The idleTimer plugin, in its most recent version, allows for several timers to be set at the
same time, for different elements.

Try to apply two different timeout values to two timers that check whether the user is idle
or not on certain elements.

Make sure that the functions do different things, or at least display different colored text.

Download from Wow! eBook <www.wowebook.com>

Chapter 13

[253]

Pop quiz
1.	When do you use the Typesearch plugin?

A. Whenever a search box needs to be added to a web page.

B. When a certain consistency between browsers is required.

C. When there's no other way to insert a search box in a webpage.

D. None of the above.

2. What is JSON?

A. JSON is a lightweight text-based open standard designed for human-readable
data interchange, derived from JavaScript.

B. JSON is a set of rules for encoding documents in machine-readable form. Tags
need to be closed.

C. JSON provides a means to create structured documents by denoting structural
semantics for text.

D. None of the above.

3. How can virtual keyboards serve as a method to protect users' privacy?

A. They do not increase security.

B. By reducing the risk of shoulder surfing.

C. By reducing the risk of keystroke logging.

D. None of the above.

4 How can the webcam plugin we used previously make use of our webcam?

A. Using an external Flash wrapper to access the webcam device.

B. JavaScript provides a built-in method to easily turn the camera on and start
the capture.

C. A core feature of jQuery is responsible for the webcam integration.

D. None of the above.

5. Is the Quovolver plugin able to cycle through images as well as blockquotes?

A. Yes. changing the selector in order to act on a set of images is enough for it
to work in a different way.

B. No, there is no way in which the plugin will be able to cycle through images.

C. Yes, but images must be contained inside blockquote elements.

D. None of the above.

Download from Wow! eBook <www.wowebook.com>

Top jQuery Plugins

[254]

Summary
By the end of our analysis, we can actually say we have covered quite a number of topics;
and this last chapter has surely helped us understand what the real world for jQuery plugins
is like.

Although very few developers care about good documentation and code "best practices",
we have to admit they do offer us some really useful software to get our hands dirty with.
Most of the plugins we have realized (and used in this chapter) are useful not only to us
(developers who had a problem), but also to a lot of other people we don't even know
exist—as strange as it sounds.

And if we ever decide to make our works available for others to download, read, modify,
or whatever, we should not forget about writing a few lines to help newcomers understand
what the whole code is about, what some code snippets do, and how the code does it.

Some useful links and offline resources for further reference can be found in Appendix A.

Download from Wow! eBook <www.wowebook.com>

A
Tools, reference, and final

recommendations
The following links, documents, and resources are a great starting point for learning about
and expanding your knowledge on jQuery-related topics.

In fact, documentation plays an important role in a programmer's life. Documentation pages
(are supposed to) provide exhaustive descriptions of how things work, best practices on
how to make use of a particular feature, and finally examples and sample programs to better
understand the methods functioning.

Anyway, here are a handful of interesting writings that could come in useful at any time.

Reference and bibliography
Some of the most useful sources of information related to jQuery and web development are
as follows:

Official jQuery documentation
Of course, the official jQuery website provides a lot of useful information, featuring examples
and user comments as a plus.

http://plugins.jquery.com

http://docs.jquery.com

http://docs.jquery.com/Plugins/Authoring

http://docs.jquery.com/Tutorials#Plugin_Development

Download from Wow! eBook <www.wowebook.com>

Tools, reference, and final recommendations

[256]

jQuery API browser
The API browser is intended to give the reader a good understanding of functions and
methods that they can use and implement into their software.

http://api.jquery.com

jQuery 1.4 Reference Guide
Written by Jonathan Chaffer and Karl Swedberg, it is "a comprehensive exploration of the
popular JavaScript library".

You probably won't read it from cover to cover, and it can be considered an offline version
of the jQuery documentation. However, I like having a real book next to me, on which I can
write, underline, and highlight—and turn pages.

Buy it now from https://www.packtpub.com/jquery-1-4-reference-guide/book.

Blogs to follow and websites to bookmark
Even online, there are loads of resources and websites or blogs dealing with jQuery. It's true
that a vast majority of them actually deal with jQuery only (and not specifically with plugin
development). However, there are many bits we can link and merge together to get the
whole picture clearly sorted out.

Download from Wow! eBook <www.wowebook.com>

Appendix A

[257]

jQuery blog
jQuery developers regularly post blog entries on the official jQuery blog. Needless to say, this
is a must-read!

http://blog.jquery.com

jQuery UI blog
If you're interested in the jQuery UI library, its official blog is a good starting point to get
to know a little better how the library works and why.

http://blog.jqueryui.com

John Resig
Though seldom updated, the site hosts many interesting posts and projects by the jQuery
author himself.

http://ejohn.org

Learning jQuery
Learning jQuery is a multi-author weblog providing jQuery tutorials, demos, and
announcements. The tutorials are for all skill levels, and each entry is categorized
by level of difficulty.

http://www.learningjquery.com

Jörn Zaefferer (bassistance)
The author is keen on jQuery development and has created many quality jQuery plugins. As
a side note he also blogs about music.

http://bassistance.de

jQuery for designers
The last post (at the time of writing) is dated back to July 2010, but the site has relatively big
archives with some useful tutorials worth reading.

http://jqueryfordesigners.com

Download from Wow! eBook <www.wowebook.com>

Tools, reference, and final recommendations

[25�]

jQuery HowTo
jQuery HowTo is another great resource for tutorials and tips about jQuery. There are more
than one hundred posts related to jQuery development.

http://jquery-howto.blogspot.com

On browsers: compatibility, comparisons, and plugins
When it comes to web development, it is best if we have some sort of tool that we can use in
case we need to debug some code, or examine a web page.

Supported browsers
jQuery supports the following browsers:

Firefox 2.0+

Internet Explorer 6+

Safari 3+

Opera 9+

Chrome 1+

The library should also work fine with Firefox 1.0.x and Konqueror. Further information can
be found at http://docs.jquery.com/Browser_Compatibility.

Compatibility master table
A very useful resource if you want to learn more about browser compatibility in terms of
features and standards supported. It is hosted on Quirksmode, courtesy of Peter-Paul
Koch at http://www.quirksmode.org/compatibility.html.

Browser plugins
There are many plugins, extensions, and add-ons that are available for inspecting and
debugging JavaScript and CSS/HTML code, some of which are extremely useful and we
might not want to miss.

FireBug (Firefox)
Essential for the jQuery developer, Firebug integrates with Firefox to put a wealth of web
development tools at your fingertips while you browse. You can edit, debug, and monitor
CSS, HTML, and JavaScript live on any web page.

Get it from http://getfirebug.com.

Download from Wow! eBook <www.wowebook.com>

Appendix A

[25�]

Also, the possibility to write extensions for Firebug has contributed to the creation of
FireQuery (http://firequery.binaryage.com), a Firebug extension for jQuery
development. Some features are as follows:

jQuery expressions are intelligently presented in the Firebug Console and
DOM inspector.

Attached jQuery data are first-class citizens.

Elements in jQuery collections are highlighted on hover.

jQuerify: Enables you to inject jQuery into any web page.

jQuery Lint: Enables you to inject jQuery Lint into page being loaded automatically
(great for ad hoc code validation).

Internet Explorer 8 Developer Tools
Microsoft published a guide on using Internet Explorer 8 built-in Developer Tools suite at
http://msdn.microsoft.com/en-us/library/dd565622%28v=VS.85%29.aspx,
which also explains how to debug JavaScript code with their debugging tool.

DebugBar (Internet Explorer)
The DebugBar (http://debugbar.com) provides a DOM inspector as well as a JavaScript
console for debugging, especially useful for IE 6 and 7.

Also, from the same website we can access an extremely useful IE tester tool, which is a
"Browser Compatibility Check for Internet Explorer Versions from 5.5 to 9".

Check it out at http://www.my-debugbar.com/wiki/IETester/HomePage.

Safari Web Inspector
Safari comes with a built-in Web Inspector tool to analyze DOM and JavaScript.

To enable the Web Inspector, open Preferences, go to the Advanced tab, and select the
Show Develop menu in the menu bar item.

More information on Web Inspector is available at http://trac.webkit.org/wiki/
WebInspector.

Dragonfly (Opera)
The built-in tool is very promising and allows for CSS, DOM inspection, and editing and
JavaScript debugging.

You can read more about this tool at http://www.opera.com/dragonfly/.

Download from Wow! eBook <www.wowebook.com>

Tools, reference, and final recommendations

[260]

Chrome Web Inspector
The Chrome Web Inspector, which is always enabled, makes it really easy to analyze and
manipulate DOM and JavaScript.

More information is available at http://www.google.com/chrome/intl/en/
webmasters-faq.html#tools.

Information on Web Inpsector can be found at: http://trac.webkit.org/wiki/
WebInspector.

Cheatsheets
Cheatsheets are useful and practical references that contain API references with detailed
description and some sample code: http://www.cheat-sheets.org/#jQuery.

jQuery plugin development checklist
Some basic key points to remember are as follows:

jQuery documentation is your best friend. Always go back to the documentation
pages when in trouble or in need of information. Reading it thoroughly wouldn't
hurt, either.

It might sound stupid, but always remember to link to the jquery.js file
(containing the jQuery library) or, no matter what, we might spend hours looking
for some error that justifies the script not running or working properly.

Always prefer the document-ready statement to any other non-jQuery functions
to check whether the page has already loaded or not. Enough said.

This can never be stressed enough: plugins based on methods are completely
different to plugins based on functions.

Method plugins extend the jQuery.fn object.

Function plugins extend the jQuery object directly.

Method plugins do support chainability.

Function plugins do not support chainability.

Method plugins should always return the jQuery object (this, in the
code), to allow for chainability.

Also refer back to Chapters 2 and 3 for more details.

Download from Wow! eBook <www.wowebook.com>

Appendix A

[261]

As a plus, Keith Wood has written a very useful article about the plugin framework that he
makes use of when developing plugins, which you may find interesting.

The article, which can be found at http://keith-wood.name/pluginFramework.
html, is an extremely detailed dissertation covering all a developer needs to know about
the jQuery plugin structure. It deals with singletons, event binding, settings, and destroy
functionalities. It is a must-read for all jQuery plugin developers out there.

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

B
Pop Quiz Answers

Chapter 1: What is jQuery About?
Question number Answer

1 C

2 D

3 A

4 C

5 C

Chapter 2: Plugins Basics
Question number Answer

1 C

2 C

3 D

4 B

5 A

6 A

7 A

8 D

9 C

10 B

Download from Wow! eBook <www.wowebook.com>

Pop Quiz Answers

[264]

Chapter 3: Our First jQuery Plugin
Question number Answer

1 D

2 A

3 C

4 C

5 B

6 D

7 D

Chapter 4: Media Plugins: Images Plugins
Question number Answer

1 B

2 B

3 A

Chapter 5: Media Plugins: Audio Plugins
Question number Answer

1 C

2 D

3 A

4 B

5 B

Chapter 6: Media Plugins: Video Plugins
Question number Answer

1 D

2 C

3 A

Download from Wow! eBook <www.wowebook.com>

Appendix B

[265]

Chapter 7: Form Plugins
Question number Answer

1 C

2 C

3 A

4 D

5 B

6 A

7 D

8 C

9 B

10 B

Chapter 8: User Interface Plugins
Question number Answer

1 A

2 B

3 C

4 D

Chapter 9: User Interface Plugins: Tooltip Plugins
Question number Answer

1 C

2 B

3 D

4 A

Download from Wow! eBook <www.wowebook.com>

Pop Quiz Answers

[266]

Chapter 10: User Interface Plugins: Menu and Navigation
Plugins

Question number Answer

1 C

2 B

3 A

Chapter 11: Animation Plugins
Question number Answer

1 B

2 A

3 C

4 D

5 A

Chapter 12: Utility Plugins
Question number Answer

1 D

2 A

3 C

4 B

Chapter 13: Top jQuery Plugins
Question number Answer

1 B

2 A

3 C

4 A

5 A

Download from Wow! eBook <www.wowebook.com>

Index
Symbols
$.delcookie function 212
$.getcookie function 212
$.setcookie function 212
.preventDefault() 130
.slideDown() method 178
.slideToggle() method 178
.slideUp() method 178

A
accordion plugin

creating 180
sliding panes, creating 180-184

addFilter method 233
animate() method 194
animation plugins

about 177
accordion plugin, creating 180
animate() method 194
fading 186
sliding 178

audio files
handling 79, 80

audio plugins
audio files, handling 79
controls, improving 90
CSS styling, adding 86
Flash player 80
jPlayer plugin 78
multiple sounds, managing 89
overview 78
plugin code, writing 83-85
style, adding 89, 90
support, adding to multiple players 86-88

autogrow plugin
creating 121-123

autosave attribute 224

B
basic jQuery script

writing 9, 10
basic plugins examples 35
blockquote elements 234-236
blogs

John Resig 257
Jörn Zaefferer (bassistance) 257
jQuery blog 257
jQuery for designers 257
jQuery HowTo 258
jQuery UI blog 257
Learning jQuery 257

browser plugins
about 258
Chrome Web Inspector 260
DebugBar (Internet Explorer) 259
Dragonfly (Opera) 259
FireBug (Firefox) 258
Internet Explorer 8 Developer Tools 259
Safari Web Inspector 259

C
callback and functions 10
center() method 72
centering things

about 70
theory, turning into code 70, 71

cheatsheets 260
checkboxes and radio buttons, form plugins 125

Download from Wow! eBook <www.wowebook.com>

[��8]

Chrome Web Inspector
about 260
URL 260

Color Fading Menu 188
compatibility master table 258
cookie plugin

about 210
creating 212-215
working 211

CrossSlide 180
CSS drop-down menu, user interface plugins

creating 166, 167, 168
fading effect, adding 170, 171
IEs issues, overcoming 170
styling 165-169

custom default plugin structure
defining 42

custom jQuery selectors, tooltip plugins
creating 152, 153, 159

D
data() method 132
DebugBar (Internet Explorer)

about 259
URL 259

Dragonfly (Opera)
about 259
URL 259

E
edit-in-place plugin, form plugins

about 128
options, adding 129
working 128

equal heights, user interface plugins
setting 139-142

F
fadeIn() method 187
fadeOut() method 187
fadeTo() method 187
fading

about 186
methods 186

fading news ticker plugin
creating 188-193
fading effects, adding 194

filter object 233
Firebug

about 258
download link 259
features 259

first animation
creating 195-198
experimenting with 199

Flash player, audio plugins
creating 80, 82

Floaty plugin 97
form check plugin

creating 114-119
form enhancement plugins, user interface plu-

gins 144
form plugins

about 112, 113
autogrow plugin 121
checkboxes and radio buttons 125, 126
edit-in-place plugin 128
form validation 113
text manipulation 127

form validation
about 113, 114
form check plugin, creating 114-119
user experience, improving 120

function plugins 28

H
horizontal centering 72
hover event 145
HTML5 spec, attributes

autoplay 79
controls 79
loop 79
preload 79
src 79

HTML5 spec, functions
buffered 80
canPlayType() 80
pause() 80
play() 80

Download from Wow! eBook <www.wowebook.com>

[��9]

I
idleTimer plugin

description 250
idle users, timing 251
information links 250
options 251
synopsis 251

image plugins
overview 62, 63

images, handling
about 64
images, showing 64-66
issues 67
options, implementing 70

InnerFade 187
innerHeight() 132
Internet Explorer 8 Developer Tools

about 259
download link 259

iPod-style drilldown menu 179

J
jGrowl 188
John Resig

URL 257
Jörn Zaefferer (bassistance)

about 257
URL 257

jPlayer plugin
about 78
features 78
URL 78

jQuery
about 8
background 8
basic jQuery script, writing 9, 10
blogs 256
callback and functions 10, 11
extending 11
plugin basics 12
reading material reference 13
web development 258
working 9

jquery.audio.js 82
jquery.js 82
jQuery 1.4 Reference Guide 256

jQuery animate() method
about 194
CSS properties 194, 195

jQuery API browser
about 256
URL 256

jQuery blog
about 257
URL 257

jQuery color plugin 199
jQuery for designers

URL 257
jQuery HowTo

about 258
URL 258

jQuery plugin development checklist 260
jQuery plugins

about 19
chaining 33, 34
exceptions logging 30
function plugins, types 28-30
idleTimer 250
JSON plugin 225
looking for 20-23
method plugins, types 31, 32
notNow 228
PassRoids 239
Quovolver 233
ScrollToElement 236
Sliding Doors 246
structure 27
types 27
Typesearch 222
using 19
Virtual Keyboard Widget 243
Webcam 230
working page, setting up 24-27

jQuery UI blog
about 257
URL 257

JSON plugin
arguments 226
description 225
information links 225
JSON strings, decoding 226, 227
JSON strings, encoding 226, 227
synopsis 226

Download from Wow! eBook <www.wowebook.com>

[��0]

JW Player
about 80
control, adding 86
plugin code, writing 83
URL 80

JW Player documentation
URL 86

jYouTubeVideo plugin 96

K
keyup event 131

L
Learning jQuery

about 257
URL 257

M
media plugins

audio plugins 77
video plugins 95

menu plugins, user interface plugins 143
method plugins 31
mousemove event 146

N
notNow plugin

arguments 228
description 228
function, postponing 228, 229
information links 228
synopsis 228

O
official jQuery documentation

references 255
online reference and documentation, jQuery

about 14
Cheatsheets 15
forums and mailing lists 15
jQuery.com 14
Nettuts 15

options object 241

P
PassRoids plugin

description 239
information links 239
options 240
synopsis 240
using 240, 241

plugin basics 12
plugins

extending 11
plugins, jQuery. See jQuery plugins
pop up, video plugins

creating 103-106
positioning, user interface plugins

about 136, 137
mouse movement events 138
Tip plugin 137

previews
adding, to video plugins 102, 103

Q
Quirksmode 258
Quovolver plugin

arguments 234
description 234
information links 233
synopsis 234
using 234-236

R
reading material reference, jQuery

books 13
jQuery 1.4 Reference Guide book 14
Learning jQuery 1.3 book 13
online reference and documentation 14

S
Safari Web Inspector

about 259
enabling 259
URL 259

sample plugins, with fade effects
Color Fading Menu 188

Download from Wow! eBook <www.wowebook.com>

[��1]

InnerFade 187
jGrowl 188

sample plugins, with slide effects
CrossSlide 180
iPod-style drilldown menu 179
slide-in contact form 179

scrollToElement() function 237
ScrollToElement plugin

arguments 237
description 236
information links 236
synopsis 237
ways to scroll 237, 238

setTimeout() function 228
setTimeout() utility 229
simple plugin

basics, settings 43, 44
closures 52-54
colors, adding 49
experimenting with functions 52
functions, using 49-51
hovering 45, 46
html() function 47
options, dealing with 47, 48

slide-in contact form 179
Slider plugin documentation pages

URL 86
sliding

about 178
methods 178

sliding doors plugin
creating 248, 249
description 247
information links 246
options 248
synopsis 248

submit() event 131
supported browsers

Chrome 1+ 258
Firefox 2.0+ 258
Internet Explorer 6+ 258
Opera 9+ 258
Safari 3+ 258

SWF object 82
swfobject.js 82

T
tag cloud plugin

about 204
creating 205-209
generating 204
theory 204, 205

test() function 130
text manipulation, form plugins 127
Tip plugin

about 137
URL 137

tooltip plugins
about 150, 151
creating 154-157
custom jQuery selectors 152
custom jQuery selectors, creating 159
pieces, merging 154
positioning 151, 152
tooltip plugin, creating 154-156

Typesearch plugin
about 222
description 222
information links 222
options 223
OSX-like search bar, obtaining 223, 224
synopsis 223

U
user interface plugins

about 135, 136
context menus 144, 145
creating 171, 172
CSS drop-down menu 165
equal heights, setting 139, 140
examples 143
form enhancement plugins 144
menu plugins 143, 163
navigation plugins 163
positioning 136
tooltip plugins 149
trees menus 144, 145
user customization, allowing 173
work, splitting 164, 165

Download from Wow! eBook <www.wowebook.com>

[���]

utility plugins
about 203
cookie handling 210
tag clouds, generating 204

V
vertical centering 72
video files

handling 97
video plugins

about 96
creating 99-101
Floaty plugin 97
jYouTubeVideo plugin 96
minor imperfections, fixing 101
overview 96
pop up, adding 102
preview thumbnails, adding 102
video files, handling 97
YouTube videos, embedding 98

virtual keyboard plugin
description 243
information links 243
layout accepted values 244
options 244
Special/Action keys 244
synopsis 244
using 245

W
webcam plugin

arguments 231
description 230
green filter, creating 233
information links 230
properties 231
setting up 232
synopsis 231
using 232

web development
browser plugins 258
compatibility master table 258
supported browsers 258

Y
YouTube embedded player parameters

URL 98
YouTube videos

embedding 98

Download from Wow! eBook <www.wowebook.com>

Thank you for buying
jQuery 1.� Plugin Development Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Download from Wow! eBook <www.wowebook.com>

jQuery 1.� Reference Guide
ISBN: 978-1-849510-04-2 Paperback: 336 pages

A comprehensive exploration of the popular
JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each function, method, and
selector expression in the jQuery library with
an easy-to-follow approach

3. Understand the anatomy of a jQuery script

4. Write your own plug-ins using jQuery’s
powerful plug-in architecture

Learning jQuery 1.�
ISBN: 978-1-847196-70-5 Paperback: 444 pages

Better Interaction Design and Web Development with
Simple JavaScript Techniques

1. An introduction to jQuery that requires
minimal programming experience

2. Detailed solutions to specific client-side
problems

3. For web designers to create interactive elements
for their designs

Please check www.PacktPub.com for information on our titles

Download from Wow! eBook <www.wowebook.com>

jQuery UI 1.7: The User Interface
Library for jQuery
ISBN: 978-1-847199-72-0 Paperback: 392 pages

Build highly interactive web applications with ready-
to-use widgets from the jQuery User Interface library

1. Organize your interfaces with reusable widgets:
accordions, date pickers, dialogs, sliders, tabs,
and more

2. Enhance the interactivity of your pages by
making elements drag-and-droppable, sortable,
selectable, and resizable

3. Revised and targeted at jQuery UI 1.7

WordPress �.0 jQuery
ISBN: 978-1-849511-74-2 Paperback: 316 pages

Enhance your WordPress website with the
captivating effects of jQuery

1. Enhance the usability and increase visual
interest in your WordPress 3.0 site with
easy-to-implement jQuery techniques

2. Create advanced animations, use the UI plugin
to your advantage within WordPress, and
create custom jQuery plugins for your site

3. Turn your jQuery plugins into WordPress
plugins and share with the world

Please check www.PacktPub.com for information on our titles

Download from Wow! eBook <www.wowebook.com>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: What is jQuery About?
	A little background
	jQuery: "the write less, do more JavaScript library"
	How jQuery works
	Time for action – writing a basic jQuery script
	Time for action – callback and functions
	Extending jQuery: Plugins
	Plugins basics
	Suggested reading that could help greatly
	Books
	Learning jQuery 1.3
	jQuery 1.4 Reference Guide

	Online reference and documentation
	jQuery.com
	Nettuts
	Cheatsheets
	Forums and mailing lists

	Summary

	Chapter 2: Plugins Basics
	Using plugins
	Time for action – looking for a plugin
	Time for action – setting up our own page
	Structure of a plugin
	Time for action – types of plugins: Function plugins
	Time for action – types of plugins: Messing with methods
	Time for action – chaining
	Basic plugins examples
	A few key things to remember
	Summary

	Chapter 3: Our First jQuery Plugin
	Defining our own default plugin structure
	Setting the basics for our first plugin
	Time for action – our first plugin, Part I
	Getting a step farther
	Time for action – our first plugin, Part II: Hovering
	Dealing with options
	Time for action – our first plugin, Part III: Options
	Using functions inside the plugin
	Time for action – our first plugin, Part IV: Functions
	Closures: Making functions private
	Time for action – our first plugin, Part V: Closures
	Summary

	Chapter 4: Media Plugins: Images Plugins
	Plugin overview
	Handling images
	Time for action – showing images
	Time for action – one step more
	Centering things
	Time for action – turning theory into code
	Putting it all together
	Time for action – the final step
	Summary

	Chapter 5: Media Plugins: Audio Plugins
	Plugin overview
	Handling audio files
	The player
	Time for action – creating the Flash player
	Putting the plugin together
	Time for action – creating the plugin
	Styling and multiple players
	Time for action – adding support for multiple players
	Time for action – adding some style
	Summary

	Chapter 6: Media Plugins: Video Plugins
	Plugin overview
	Handling video files
	Embedding YouTube videos
	Time for action – creating your first video plugin
	Adding preview thumbnails and the pop-up feel
	Time for action – adding previews
	Time for action – creating a pop up
	Summary

	Chapter 7: Form Plugins
	Form plugins in general
	Validating forms
	Time for action – creating the form check plugin
	Auto-growing textareas
	Time for action – creating the autogrow plugin
	Other types of form-related plugins
	Checkboxes and radio buttons
	Text manipulation
	Edit in place

	Summary

	Chapter 8: User Interface Plugins
	Positioning
	Time for action – understanding mouse movement events
	Setting equal heights
	Time for action – setting the same height
	Other examples of user interface plugins
	Menu plugins
	Form enhancement plugins
	Context menus and tree menus

	Summary

	Chapter 9: User Interface Plugins: Tooltip Plugins
	Tooltip plugins in general
	Positioning the tooltip
	Custom jQuery selectors
	Time for action – creating custom jQuery selectors
	Merging pieces together
	Time for action – creating a tooltip plugin
	Summary

	Chapter 10: User Interface Plugins: Menu and Navigation Plugins
	Splitting the work in two
	CSS: Drop-down menu and styling

	Time for action – creating and styling the menu
	jQuery: Spicing things up

	Time for action – adding a fading effect
	Creating the plugin
	Time for action – creating the plugin
	Summary

	Chapter 11: Animation Plugins
	Sliding
	What does "sliding" actually mean?
	Sample plugins that "slide"
	Creating an accordion plugin (that slides!)

	Time for action – creating sliding panes
	Fading
	What does "fading" actually mean?
	Sample plugins that "fade"
	Creating a fading news ticker plugin

	Time for action – creating the plugin
	The animate() method
	Understanding the jQuery animate() method

	Time for action – creating your first animation
	Summary

	Chapter 12: Utility Plugins
	Generating tag clouds
	A bit of theory to start with

	Time for action – creating a tag cloud plugin
	Cookie handling
	How cookies work

	Time for action – creating a cookie plugin
	Summary

	Chapter 13: Top jQuery Plugins
	Typesearch
	Description
	Synopsis

	Time for action – obtaining an OSX-like search bar
	with the Typesearch plugin
	Final thoughts

	JSON plugin
	Description
	Synopsis

	Time for action – encoding and decoding JSON strings
	Final thoughts

	notNow
	Description
	Synopsis

	Time for action – postponing a function using the notNow plugin
	Final thoughts

	Webcam
	Description
	Synopsis

	Time for action – setting up and using the webcam plugin
	Final thoughts

	Quovolver
	Description
	Synopsis

	Time for action – putting Quovolver to work
	Final thoughts

	ScrollToElement
	Description
	Synopsis

	Time for action – different ways of scrolling
	Final thoughts

	PassRoids
	Description
	Synopsis

	Time for action – using the plugin
	Final thoughts

	Virtual Keyboard Widget
	Description
	Synopsis

	Time for action – using the virtual keyboard plugin
	Final thoughts

	Sliding Doors
	Description
	Synopsis

	Time for action – creating a sliding door
	Final thoughts

	idleTimer
	Description
	Synopsis

	Time for action – timing idle users
	Final thoughts

	Summary

	Appendix A: Tools, reference, and final recommendations
	Reference and bibliography
	Official jQuery documentation
	jQuery API browser
	jQuery 1.4 Reference Guide

	Blogs to follow and websites to bookmark
	jQuery blog
	jQuery UI blog
	John Resig
	Learning jQuery
	Jörn Zaefferer (bassistance)
	jQuery for designers
	jQuery HowTo

	On browsers: compatibility, comparisons, and plugins
	Supported browsers
	Compatibility master table
	Browser plugins
	FireBug (Firefox)
	Internet Explorer 8 Developer Tools
	DebugBar (Internet Explorer)
	Safari Web Inspector
	Dragonfly (Opera)
	Chrome Web Inspector

	Cheatsheets
	jQuery plugin development checklist

	Appendix B: Pop Quiz Answers
	Chapter 1: What is jQuery About?
	Chapter 2: Plugins Basics
	Chapter 3: Our First jQuery Plugin
	Chapter 4: Media Plugins: Images Plugins
	Chapter 5: Media Plugins: Audio Plugins
	Chapter 6: Media Plugins: Video Plugins
	Chapter 7: Form Plugins
	Chapter 8: User Interface Plugins
	Chapter 9: User Interface Plugins: Tooltip Plugins
	Chapter 10: User Interface Plugins: Menu and Navigation Plugins
	Chapter 11: Animation Plugins
	Chapter 12: Utility Plugins
	Chapter 13: Top jQuery Plugins
	Index

